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Abstract— Multiword terms (MWTs) are relevant 

strings of words in text collections. Once they are 

automatically extracted, they may be used by an 

Information Retrieval system, suggesting its users 

possible conceptual interesting refinements of their 

information needs. As a matter of fact, these 

multiword terms point to relevant information, often 

corresponding to topics and subtopics in the text 

collection, and maybe quite useful specially for highly 

refining generic queries. A new approach is proposed 

to find collocation from text document. As mentioned 

earlier, a collocation is just a set of words occurring 

together more often than by chance in a corpus. 

Collocations are extracted based on the frequency of 

the joint occurrence of the words as well as that of the 

individual occurrences of each of the words in the 

whole text. Intuitively, when a set of words is 

extracted as a collocation, then the joint occurrence of 

the words must be high in comparison to that of the 

constituent individual words. 
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I. INTRODUCTION 

In Information Retrieval (IR) it is currently accepted 

that multiword terms enhance IR precision. There are 

doubts about its role, namely about whether they 

should work as real indexes or they should play a 

special role in the refinement phase of user 

information needs. These multiword terms should 

constitute a separate document. So, if we want to 

allow the access to n collections of documents we 

should produce n documents and each one of these 

documents should contain the multiword terms of each 

text collection. Currently used indexing machinery 

should also index the collection of multiword terms. 

Acting like this, an information need required from an 

IR system brings up a number of documents from each 

collection. Apart from the traditional refinement 

possibilities using key-words or document descriptors, 

the system here present may suggest the user the 

multiword terms containing the words used in the 

initial query, enabling an information need refinement 

over the whole collection of collections or over a 

specific collection. It is left to the user to decide if 

he/her wants to search over the set of the document 

collections or over just one collection.  

 

While word based queries show up an enormous 

number of documents per collection, the use of 

multiword terms suggested by this IR system 

dramatically prunes the search space to just a few 

documents. In this paper we focus on the automatic 

extraction of multiword terms for any kind of 

document collection independently of the language 

used on those documents. 
 

II. RELATED WORK 

The Text n-grams extraction is the first part needed for 

the future use. We are not interested about all n-grams 

but the specific ones that occur in text at least m-

times. It's because we're comparing similarity of 

documents, respectively the mostly repeated parts of 

them. In case of huge texts such as 1.5T TREC 

ClueWeb-B, the use of the ordinary data structures is, 

such as hash table or search trees, mainly ineffective 

because the amount of the data cannot be stored in the 

RAM. Hard drive can be used as a temporary storage 

where the pre processed data can be stored. The 

second option is to utilize structures like a B+ tree or 

Hash table to manage this amount of data. Within the 

extraction is also mainly stored the information about 

n-gram position in the document. To save space, it is 

appropriate to store this information without 

redundancy. The use of double indexing for this case 

was shown within data collections protein-10m, 

protein-100m and protein-1g. Due to the size of the 

index was reduced 1.9 to 2.7 times and the search 

speed increased up to 13 times. One opportunity how 

to process the n-grams is to store complete text of this 

ngram in a data structure. Effective tool for storing the 



International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 3 May to June 2013 

ISSN: 2249-2615                     http://www.ijpttjournal.org                             Page 39 

data is for example the ternary search tree in which 

every node stores information about one n-gram 

character. As shown by tests on collections Google 

WebIT and English Gigaword corpus is the data 

structure fast enough. 

 

However, storing whole n-grams in a data structure 

considerably increases memory requirements. For this 

case it is better to use two data structures where the 

words in n-grams are at first converted to unique 

numbers and only after that the numbers are processed 

by data structure. The most used data structure to map 

the words to numbers in n-grams is the hashmap. The 

Hashmap is, thanks to its properties, fast enough and 

memory effective to convert words to numbers. It is 

ideal in cases where there is beforehand known the 

word count. To store n-grams or the words indexes 

contained in them is widely used B+ tree. It is no 

wonder because this data structure was designed to 

search effectively also with regard to the lack of the 

memory. In every cell of the B+ tree is stored whole 

ngram, which is used for comparison during the search 

process. This attitude was tested on data collection 

WebIT 5-gram corpus, which contains over 88GB 

data separated to collection of unigrams to 5-grams. 

Thanks to word indexing and the use of B+ trees it 

was managed to store the whole data collection on 598 

MB of memory. In this case there is no problem to 

have the data in memory and thus avoid using slow 

hard drives.  

 

The creation of the indexes for 5-grams itself takes 

approximately an hour but it lasts only 2 seconds to 

look up 1,000 5-grams. One of the key requirements to 

look up n-grams is the opportunity to use wildcard 

placeholders, for example when is suitable to look 

only for particular similarity. When indexing both 

words and n-grams is first necessary to find a range of 

words in the first index. However, this is only possible 

when the indexes are sorted with the words. If this 

case is fulfilled, it is easy to look up using data 

structures like B+ tree. 

III. EVALUATION METRICS 

There have been various evaluation metrics developed 

and validated for reliability in fields such as MT and 

summarization (Callison-Burch et al., 2009). While n-

gram-based metrics don’t capture systematic 

alternations in key phrases, they do support partial 

match between key phrase candidates and the 

reference key phrases. In this section, we first 

introduce a range of popular n-gram-based evaluation 

metrics from the MT and automatic summarization 

literature, which we naively apply to the task of key 

phrase evaluation. We then present R-precision, an 

ngram- based evaluation metric developed specifically 

for key phrase evaluation, and propose a modified 

version of R-precision which weights n-grams 

according to their relative position in the key phrase. 

 

3.1 Machine Translation and Summarization 

Evaluation Metrics 

 

One subtle property of key phrase evaluation is that 

there is no a priori preference for shorter key phrases 

over longer key phrases, unlike MT where shorter 

strings tend to be preferred. Hence, we use the longer 

NP as reference and the shorter NP as a translation, to 

avoid the length penalty in most MT metrics. 

METEOR (Agarwal and Lavie, 2008) is similar to 

BLEU, in that it measures string-level similarity 

between the reference and candidate translations. The 

difference is that it allows for more match flexibility, 

including stem variation and WordNet synonymy. The 

basic metric is based on the number of mapped 

unigrams found between the two strings, the total 

number of unigrams in the translation, and the total 

number of unigrams in the reference. 

 

NIST (Martin and Przybocki, 1999) is once again 

similar to BLEU, but integrates a proportional 

difference in the co-occurrences for all n-grams while 

weighting more heavily n-grams that occur less 

frequently, according to their information value. 

ROUGE (Lin and Hovy, 2003) — and its variants 

including ROUGE-N and ROUGE-L—is similarly 

based on n-gram overlap between the candidate and 

reference summaries.  

 

For example, ROUGE-N is based on co-occurrence 

statistics, using higher-order n-grams (n > 1) to 

estimate the fluency of summaries. ROUGE-L uses 

longest common subsequence (LCS)-based statistics, 

based on the assumption that the longer the substring 

overlaps between the two strings, the greater the 

similar Saggion et al. (2002). ROUGEW is a weighted 

LCS-based statistic that prioritizes consecutive LCSes. 

In this research, we experiment exclusively with the 

basic ROUGE metric, and unigrams (i.e. ROUGE-1). 

 

3.2 R-precision 

 

R-precision is based on the number of overlapping 

words between a key phrase and a candidate, as well 

as the length of each. The metric differentiates three 
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types of near-misses: Include, Part of and Morph. The 

first two types are based on an n-gram approach, while 

the third relies on lexical variation. As we use 

stemming, in line with the majority of previous work 

on key phrase extraction evaluation, we focus 

exclusively on the first two cases, namely include, and 

part of.  

 

The final score returned by R-precision is: 

 

Number of overlapping word(s) 

Length of key phrase/candidate 

Where the denominator is the longer of the key phrase 

and candidate. 

 

3.3 Modified R-precision 

 

R-precision which assigns different weights for 

component words based on their position in the key 

phrase (unlike R-precision which assigns the same 

score for each matching component word). The head 

noun generally encodes the core semantics of the key 

phrase, and as a very rough heuristic, the further a 

word is from the head noun, the less semantic import 

on the key phrase it has. As such, modified R-

precision assigns a score to each component word 

relative to its position as  

                          CW =     __1__ 

                                         N−i+1 

Where N is the number of component words in the 

key phrase and i is the position of the component word 

in the key phrase (1 = leftmost word). 

  

IV. EXTRACATION & N-GRAM BASICS 

 

N-gram Basics: 

 

An N-gram is a character sequence of length n 

extracted from a document. Typically, n is fixed for a 

particular corpus of documents and the queries made 

against that corpus. To generate the N-gram vector for 

a document, a window n character in length is moved 

through the text, sliding forward one character at a 

time. At each position of the window, the sequence of 

characters in the window is recorded.  

 

For example:  

The first four 5-grams in the sentence “ 

character sequences” are “ char”, “chara”, “harac” and 

“aract”. In some schemes, the window may be slid 

more than one character after each n-gram is recorded. 

The concept of n-grams was first discussed in 1951 by 

Shannon. Since then the concept of n-grams have been 

used in many areas, such as spelling-related 

applications, string searching, and prediction and 

speech recognition. Most information retrieval 

systems are word-based because there are several 

advantages for word based systems over n-gram based 

systems. 

 

 
 

Figure 1: Number of unique terms (words and n-

grams) in corpora of varying sizes. 

 

As a result, the index for an n-gram-based system will 

be much larger than that of a word-based system. 

Second, stemming techniques can be used in word-

based systems but not in n-gram-based systems. 

Stemming is the process that removes prefixes and 

suffixes from words in a document or query in the 

formation of terms in the system’s internal model. 

 

 This is done to group words that have the same 

concept meaning, such as “walk”, “walked”, “walker” 

and “walking,” freeing the user from needing to match 

the particular form of a word in a query and document. 

Stemming also reduces the number of unique terms to 

be indexed. Third, in word-based system, a table can 

be established for each word to list all of its 

synonyms. By doing this, if in the query there is a 

word “home,” according to that table, the system will 

also retrieve the documents containing the word 

“house.” Finally, most word-based systems use stop 

words. Since stop words appear in most documents, 

and are thus not helpful for retrieval, these words are 

usually removed from the internal model of a 

document or query. 

 

 

V. THE LOCAL Maxs ALGORITHM 
 

The Local Maxs Algorithm: 

The Local Maxs is an algorithm that works 

with any text collection as input and automatically 
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produces multiword terms (MWTs) from that text 

collection.  

 

In the context of Local Maxs, we define:  

An antecedent (in size) of the hole-free n-gram w1, 

w2...wn, ant((w1...wn)), is a hole-free sub-n-gram of 

the n-gram w1...wn, having size n-1. 

 i.e.,   The (n-1)-gram w1...wn-1 or w2... wn .  

 

A successor (in size) of the hole-free n-gram M = 

(w1,w2...wn), succ(M), is a hole-free (n+1)-gram N 

such that M is an ant(N).  

i.e., Succ(M) contains the n-gram M and an additional 

word before (to the left) or after (to the right) M. 

 

Let W be a hole-free n-gram; we say that W is a MWT 

if4:  

 
Where g(.) is a function that measures the "glue" 

sticking the words together within the considered n-

gram. 

 

The Results 

Using the LocalMaxs algorithm and the 

SCP_f measure, we have attained 84% Precision and 

94,039 MWTs from this 2,722,476-word text 

collection. In this experience the LocalMaxs algorithm 

was prepared to produce MWTs from 2-grams to 8-

grams. 

 

CONCLUSION 
 In this paper, discussed about the  Local Maxs 

algorithm, the SCP measure , it is possible to extract 

relevant multiword terms. From an Information 

Retrieval perspective, these multiword terms point to 

relevant information, often corresponding to topics 

and subtopics in the text collection. When a set of 

words is extracted as a collocation, then the joint 

occurrence of the words must be high in comparison 

to that of the constituent individual words.This will 

improve the result and the convergence of the result. 
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