
International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 3 May to June 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 38

Extracting Multiword’s from Large Document

Collection based N-Gram
 M. Nirmala

1
, Dr.E.Ramaraj

2

1
Research Scholar, School of Computer Science and Engineering,

2 Associate Professor, School of Computer Science and Engineering,

Alagappa University, Karaikudi, India

Abstract— Multiword terms (MWTs) are relevant

strings of words in text collections. Once they are

automatically extracted, they may be used by an

Information Retrieval system, suggesting its users

possible conceptual interesting refinements of their

information needs. As a matter of fact, these

multiword terms point to relevant information, often

corresponding to topics and subtopics in the text

collection, and maybe quite useful specially for highly

refining generic queries. A new approach is proposed

to find collocation from text document. As mentioned

earlier, a collocation is just a set of words occurring

together more often than by chance in a corpus.

Collocations are extracted based on the frequency of

the joint occurrence of the words as well as that of the

individual occurrences of each of the words in the

whole text. Intuitively, when a set of words is

extracted as a collocation, then the joint occurrence of

the words must be high in comparison to that of the

constituent individual words.

Keywords— Multiword terms (MWTs), Information,

Collocations, Extraction , Text Document.

I. INTRODUCTION

In Information Retrieval (IR) it is currently accepted

that multiword terms enhance IR precision. There are

doubts about its role, namely about whether they

should work as real indexes or they should play a

special role in the refinement phase of user

information needs. These multiword terms should

constitute a separate document. So, if we want to

allow the access to n collections of documents we

should produce n documents and each one of these

documents should contain the multiword terms of each

text collection. Currently used indexing machinery

should also index the collection of multiword terms.

Acting like this, an information need required from an

IR system brings up a number of documents from each

collection. Apart from the traditional refinement

possibilities using key-words or document descriptors,

the system here present may suggest the user the

multiword terms containing the words used in the

initial query, enabling an information need refinement

over the whole collection of collections or over a

specific collection. It is left to the user to decide if

he/her wants to search over the set of the document

collections or over just one collection.

While word based queries show up an enormous

number of documents per collection, the use of

multiword terms suggested by this IR system

dramatically prunes the search space to just a few

documents. In this paper we focus on the automatic

extraction of multiword terms for any kind of

document collection independently of the language

used on those documents.

II. RELATED WORK

The Text n-grams extraction is the first part needed for

the future use. We are not interested about all n-grams

but the specific ones that occur in text at least m-

times. It's because we're comparing similarity of

documents, respectively the mostly repeated parts of

them. In case of huge texts such as 1.5T TREC

ClueWeb-B, the use of the ordinary data structures is,

such as hash table or search trees, mainly ineffective

because the amount of the data cannot be stored in the

RAM. Hard drive can be used as a temporary storage

where the pre processed data can be stored. The

second option is to utilize structures like a B+ tree or

Hash table to manage this amount of data. Within the

extraction is also mainly stored the information about

n-gram position in the document. To save space, it is

appropriate to store this information without

redundancy. The use of double indexing for this case

was shown within data collections protein-10m,

protein-100m and protein-1g. Due to the size of the

index was reduced 1.9 to 2.7 times and the search

speed increased up to 13 times. One opportunity how

to process the n-grams is to store complete text of this

ngram in a data structure. Effective tool for storing the

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 3 May to June 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 39

data is for example the ternary search tree in which

every node stores information about one n-gram

character. As shown by tests on collections Google

WebIT and English Gigaword corpus is the data

structure fast enough.

However, storing whole n-grams in a data structure

considerably increases memory requirements. For this

case it is better to use two data structures where the

words in n-grams are at first converted to unique

numbers and only after that the numbers are processed

by data structure. The most used data structure to map

the words to numbers in n-grams is the hashmap. The

Hashmap is, thanks to its properties, fast enough and

memory effective to convert words to numbers. It is

ideal in cases where there is beforehand known the

word count. To store n-grams or the words indexes

contained in them is widely used B+ tree. It is no

wonder because this data structure was designed to

search effectively also with regard to the lack of the

memory. In every cell of the B+ tree is stored whole

ngram, which is used for comparison during the search

process. This attitude was tested on data collection

WebIT 5-gram corpus, which contains over 88GB

data separated to collection of unigrams to 5-grams.

Thanks to word indexing and the use of B+ trees it

was managed to store the whole data collection on 598

MB of memory. In this case there is no problem to

have the data in memory and thus avoid using slow

hard drives.

The creation of the indexes for 5-grams itself takes

approximately an hour but it lasts only 2 seconds to

look up 1,000 5-grams. One of the key requirements to

look up n-grams is the opportunity to use wildcard

placeholders, for example when is suitable to look

only for particular similarity. When indexing both

words and n-grams is first necessary to find a range of

words in the first index. However, this is only possible

when the indexes are sorted with the words. If this

case is fulfilled, it is easy to look up using data

structures like B+ tree.

III. EVALUATION METRICS

There have been various evaluation metrics developed

and validated for reliability in fields such as MT and

summarization (Callison-Burch et al., 2009). While n-

gram-based metrics don’t capture systematic

alternations in key phrases, they do support partial

match between key phrase candidates and the

reference key phrases. In this section, we first

introduce a range of popular n-gram-based evaluation

metrics from the MT and automatic summarization

literature, which we naively apply to the task of key

phrase evaluation. We then present R-precision, an

ngram- based evaluation metric developed specifically

for key phrase evaluation, and propose a modified

version of R-precision which weights n-grams

according to their relative position in the key phrase.

3.1 Machine Translation and Summarization

Evaluation Metrics

One subtle property of key phrase evaluation is that

there is no a priori preference for shorter key phrases

over longer key phrases, unlike MT where shorter

strings tend to be preferred. Hence, we use the longer

NP as reference and the shorter NP as a translation, to

avoid the length penalty in most MT metrics.

METEOR (Agarwal and Lavie, 2008) is similar to

BLEU, in that it measures string-level similarity

between the reference and candidate translations. The

difference is that it allows for more match flexibility,

including stem variation and WordNet synonymy. The

basic metric is based on the number of mapped

unigrams found between the two strings, the total

number of unigrams in the translation, and the total

number of unigrams in the reference.

NIST (Martin and Przybocki, 1999) is once again

similar to BLEU, but integrates a proportional

difference in the co-occurrences for all n-grams while

weighting more heavily n-grams that occur less

frequently, according to their information value.

ROUGE (Lin and Hovy, 2003) — and its variants

including ROUGE-N and ROUGE-L—is similarly

based on n-gram overlap between the candidate and

reference summaries.

For example, ROUGE-N is based on co-occurrence

statistics, using higher-order n-grams (n > 1) to

estimate the fluency of summaries. ROUGE-L uses

longest common subsequence (LCS)-based statistics,

based on the assumption that the longer the substring

overlaps between the two strings, the greater the

similar Saggion et al. (2002). ROUGEW is a weighted

LCS-based statistic that prioritizes consecutive LCSes.

In this research, we experiment exclusively with the

basic ROUGE metric, and unigrams (i.e. ROUGE-1).

3.2 R-precision

R-precision is based on the number of overlapping

words between a key phrase and a candidate, as well

as the length of each. The metric differentiates three

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 3 May to June 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 40

types of near-misses: Include, Part of and Morph. The

first two types are based on an n-gram approach, while

the third relies on lexical variation. As we use

stemming, in line with the majority of previous work

on key phrase extraction evaluation, we focus

exclusively on the first two cases, namely include, and

part of.

The final score returned by R-precision is:

Number of overlapping word(s)

Length of key phrase/candidate

Where the denominator is the longer of the key phrase

and candidate.

3.3 Modified R-precision

R-precision which assigns different weights for

component words based on their position in the key

phrase (unlike R-precision which assigns the same

score for each matching component word). The head

noun generally encodes the core semantics of the key

phrase, and as a very rough heuristic, the further a

word is from the head noun, the less semantic import

on the key phrase it has. As such, modified R-

precision assigns a score to each component word

relative to its position as

 CW = __1__

 N−i+1

Where N is the number of component words in the

key phrase and i is the position of the component word

in the key phrase (1 = leftmost word).

IV. EXTRACATION & N-GRAM BASICS

N-gram Basics:

An N-gram is a character sequence of length n

extracted from a document. Typically, n is fixed for a

particular corpus of documents and the queries made

against that corpus. To generate the N-gram vector for

a document, a window n character in length is moved

through the text, sliding forward one character at a

time. At each position of the window, the sequence of

characters in the window is recorded.

For example:

The first four 5-grams in the sentence “

character sequences” are “ char”, “chara”, “harac” and

“aract”. In some schemes, the window may be slid

more than one character after each n-gram is recorded.

The concept of n-grams was first discussed in 1951 by

Shannon. Since then the concept of n-grams have been

used in many areas, such as spelling-related

applications, string searching, and prediction and

speech recognition. Most information retrieval

systems are word-based because there are several

advantages for word based systems over n-gram based

systems.

Figure 1: Number of unique terms (words and n-

grams) in corpora of varying sizes.

As a result, the index for an n-gram-based system will

be much larger than that of a word-based system.

Second, stemming techniques can be used in word-

based systems but not in n-gram-based systems.

Stemming is the process that removes prefixes and

suffixes from words in a document or query in the

formation of terms in the system’s internal model.

 This is done to group words that have the same

concept meaning, such as “walk”, “walked”, “walker”

and “walking,” freeing the user from needing to match

the particular form of a word in a query and document.

Stemming also reduces the number of unique terms to

be indexed. Third, in word-based system, a table can

be established for each word to list all of its

synonyms. By doing this, if in the query there is a

word “home,” according to that table, the system will

also retrieve the documents containing the word

“house.” Finally, most word-based systems use stop

words. Since stop words appear in most documents,

and are thus not helpful for retrieval, these words are

usually removed from the internal model of a

document or query.

V. THE LOCAL Maxs ALGORITHM

The Local Maxs Algorithm:

The Local Maxs is an algorithm that works

with any text collection as input and automatically

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 3 Issue 3 May to June 2013

ISSN: 2249-2615 http://www.ijpttjournal.org Page 41

produces multiword terms (MWTs) from that text

collection.

In the context of Local Maxs, we define:

An antecedent (in size) of the hole-free n-gram w1,

w2...wn, ant((w1...wn)), is a hole-free sub-n-gram of

the n-gram w1...wn, having size n-1.

 i.e., The (n-1)-gram w1...wn-1 or w2... wn .

A successor (in size) of the hole-free n-gram M =

(w1,w2...wn), succ(M), is a hole-free (n+1)-gram N

such that M is an ant(N).

i.e., Succ(M) contains the n-gram M and an additional

word before (to the left) or after (to the right) M.

Let W be a hole-free n-gram; we say that W is a MWT

if4:

Where g(.) is a function that measures the "glue"

sticking the words together within the considered n-

gram.

The Results

Using the LocalMaxs algorithm and the

SCP_f measure, we have attained 84% Precision and

94,039 MWTs from this 2,722,476-word text

collection. In this experience the LocalMaxs algorithm

was prepared to produce MWTs from 2-grams to 8-

grams.

CONCLUSION
 In this paper, discussed about the Local Maxs

algorithm, the SCP measure , it is possible to extract

relevant multiword terms. From an Information

Retrieval perspective, these multiword terms point to

relevant information, often corresponding to topics

and subtopics in the text collection. When a set of

words is extracted as a collocation, then the joint

occurrence of the words must be high in comparison

to that of the constituent individual words.This will

improve the result and the convergence of the result.

ACKNOWLEDGMENT

First and for most, I own my whole hearted thanks to

god for his merciful guidance and abundant blessing.

I am greatly indebted to my parents and department

faculties for their great encouragement and co-

operation in all aspects to develop this paper.

REFERENCES

1. Efficient in-memory data structures for n-grams indexing .
Daniel Robenek, Jan Plato_s, and V_aclav Sn_a_sel,

fdaniel.robenek.st, jan.platos, vaclav.snasel.

2. Evaluating N-gram based Evaluation Metrics for Automatic

Keyphrase Extraction. Su Nam Kim, Timothy Baldwin, Min-

Yen Kan. sunamkim@gmail.com, tb@ldwin.net,
kanmy@comp.nus.edu.sg.

3. n-Gram/2L: A Space and Time Efficient Two-Level n-Gram
Inverted Index Structure, Min-Soo Kim, Kyu-Young Whang,

Jae-Gil Lee, Min-Jae Lee. mskim, kywhang, jglee, mjlee

@mozart.kaist.ac.kr.

4. Extracting Multiword Terms from Document collections.

Quinta da Torre, 2725, Monte da Caparica, Quinta da Torre,
2725, Monte da Caparica.

5. Automatic Keyword Extraction From Any Text Document
Using N-gram Rigid Collocation,Bidyut Das, Subhajit Pal,

Suman Kr. Mondal, Dipankar Dalui, Saikat Kumar

Shome.International Journal of Soft Computing and
Engineering (IJSCE)ISSN: 2231-2307, Volume-3, Issue-2.

6. Advanced Information Extraction with n-gram based
LSI,Ahmet Güven, Ö. Özgür Bozkurt, and Oya

Kalıpsız.World Academy of Science, Engineering and

Technology 17 2008.

7. Evaluating N-gram based Evaluation Metrics for automatic

Keyphrase Extraction ,Su Nam Kim, Timothy Baldwin,CSSE
University of Melbourne,sunamkim@gmail.com,

tb@ldwin.net.Min-Yen Kan School of Computing . National

University of Singapore ,kanmy@comp.nus.edu.sg

8. Information Extraction from Web-Scale N-Gram Data ,Niket

Tandon. ntandon@mpi-inf.mpg.de ,Gerard de Melo Max
Planck Institute for Informatics Saarbrücken, Germany

gdemelo@mpi-inf.mpg.de.

9. A Distributed N-Gram Indexing System to Optimizing Persian

Information Retrieval ,Mohadese Danesh, Behrouz Minaei,

and Omid Kashefi.International Journal of Computer Theory
and Engineering, Vol. 5, No. 2, April 2013.

10. Performance and Scalability of a Large-Scale N-gram Based
Information Retrieval System,Ethan Miller, Dan Shen, Junli

Liu, and Charles Nicholas.University of Maryland Baltimore

County,elm,dshen,jliu,nicholas@csee.umbc.edu.

