Results Concerning Acyclic Chromatic Numbers of Graphs

I.H.Nagarajarao^{#1}, B.L.V.Vinay Kumar^{*2}

 #1 Director & Sr.Prof.G.V.P College For Degree And P.G.Courses Rushikonda, Visakhapatnam-530045
 ^{#2} Asst.Professor ,Department of CSE ,G.V.P. College of Engineering For Women Madhurwada,Visakhapatnam-530041

Abstract— The acyclic chromatic numbers of standard graphs and of their tensor products are evaluated.

Keywords—Chromatic number, k-coloring, Tensor product

I. INTRODUCTION

The concept of chromatic number of a graph plays a vital role in colouring problems. The five colour result and the four colour conjecture are very prominent ones in Graph Colouring techniques. Vince[6] introduced a natural generalization of graph colouring and proved some basic results that have enhanced further interest in these problems. Alon et al.[1] introduced the concept of acyclic Colouring. This has useful applications in computational problems. We considered this concept for standard graphs.

Throughout this paper, by a graph we mean a non empty, finite, connected and simple graph.

For standard notions, we refer Bondy and Murthy[2].

II. PRELIMINARIES

2.1. Definition[2]: The chromatic number of a graph G, denoted by $\chi(G)$, is the least positive integer k such that G has a proper k - (vertix) Colouring.

By a proper k-Colouring of a graph G, we mean that the vertices of G are coloured with k colours such that no two adjacent vertices of G receive the same colour in the colouring.

2.2 Definition [1]: A proper k-colouring of a graph G is said to be acyclic iff (if and only if) every sub graph of G induced by two colours (colour classes of the k-colouring) is acyclic (i.e. the sub graph does not contain any cycle).

2.3. Definition[1] : The acyclic chromatic number of G, denoted by $\chi_a(G)$, is the least positive integer k such that G has an acyclic k-Colouring.

2.4. Convention: For the graph G with single vertex, i.e. trvial graph, we take $\chi_a(G) = 1 = \chi(G)$.

2.5. Result: If G is any acyclic graph, then $\chi_a(G) = \chi(G)$. The result follows trivially.

2.6. Examples: (i) For the path
$$P_n(n \ge 2), \chi_a(P_n) = \chi(P_n) = 2$$
.

(ii) For a tree T with at least two vertices, $\chi_a(T) = \chi(T) = 2$.

Both P_n and T are acyclic and $\chi(P_n) = \chi(T) = 2$; any subgraph of either P_n or T induced by two colours is itself.

III. ACYCLIC CHROMATIC NUMBER OF STANDARD GRAPHS

3.1. Theorem: For the complete graph $K_n(n \ge 2), \chi_a(K_n) = n = \chi(K_n)$

Proof :Since K_2 is acyclic follows that $\chi_a(K_2) = 2 = \chi(K_2)$.

Let $n \ge 3$ by the definition of K_n any two vertices of K_n are adjacent and hence follows that $\chi(K_n) = n$ and the subgraph generated by any two vertices (Colour classes) is K_2 , which is acyclic. So $\chi_a(K_n) = n = \chi(K_n)$.

3.2. Theorem: For the cycle $C_n(n \ge 3)$ (any cycle has at least three vertices) $\chi_a(C_n) = 3 = \begin{cases} \chi(C_n) \text{ if n is odd,} \\ = \chi(C_n) + 1 \text{ if n is even} \end{cases}$

Proof : Let the vertex set V of C_n be $\{v_1, v_2, \dots, v_n\}$ Case 1: Suppose n is odd.

If n=3 then $C_3 = K_3$ and so $\chi_a(C_3) = \chi_a(K_3) = 3 = \chi(K_3) = \chi(C_3)$. Let $n \ge 5$. We partition V as follows.

Denote $V_1 = \{v_1, v_3, \dots, v_{n-2}\}, V_2 = \{v_2, v_4, \dots, v_{n-1}\}$ and $V_3 = \{v_n\}$. Observe that no two vertices of either V_1 or V_2 are adjacent (in C_n) and the single vertex v_n is adjacent to both v_1 and v_{n-1} where $v_1 \in V_1$ and $v_{n-1} \in V_2$. So for having a proper colouring we have to assign distinct colours to the V_1 class, V_2 class and V_3 class. Thus a minimum of three colours are required to have proper colouring. So $\chi(C_n) = 3$ Further, the subgraph of C_n induced by any two colours are $G[\{V_1\} \cup \{V_2\}], G[\{V_1\} \cup \{V_3\}]$ and $G[\{V_2\} \cup \{V_3\}];$ these are proper subgraph of C_n . Since C_n is the only cycle in C_n it follows that these sub graphs are acyclic and hence $\chi_a(C_n) = 3$. $\Rightarrow \chi_a(C_n) = 3 = \chi(C_n)$ When n is odd and >1. Case 2: Suppose n is even. Now let $V_1 = \{v_1, v_3, \dots, v_{n-2}\}$ and $V_2 = \{v_2, v_4, \dots, v_n\}, \{V_1, V_2\}$ gives rise a partition of V such that no two

Now let $V_1 = (V_1, V_3, \dots, V_{n-2})$ and $V_2 = (V_2, V_4, \dots, V_n)$. (V_1, V_2) gives rise a partition of V such that no two vertices of either V_1 or V_2 are adjacent in C_n . Hence follows that $\chi(C_n) = 2$. Now any sub graph of C_n induced by two colours is nothing but C_n which is a cycle.

Now take any $v \in V_1 \cup V_2$. Assign a third colour to v and one colour to $V_1 - \{v\}$ and second colour to $V_2 - \{v\}$ $(V_j - \{v\} = V_j \text{ if } v \notin V_j (j = 1, 2))$.

Denote $V_3 = \{v\}$.Now any subgraph of C_n induced by $(V_1 - \{v\}) \cup V_3$ or $(V_2 - \{v\}) \cup V_3$ is a proper subgraph of C_n and hence acyclic. Hence $\chi_a(C_n) = 3 = 2 + 1 = \chi(C_n) + 1$.

This completes the proof of the theorem.

3.3. Theorem : If G is any bipartite graph with at least three vertices then

(i) $\chi_a(G) = 2 = \chi(G)$ if G doesnot contain any even cycle

and (ii) $\chi_a(G) = 3 = 2 + 1 = \chi(G) + 1$ If G contains an even cycle.

Proof: Let G be a bipartite graph with a bipartition $\{V_1, V_2\}$ of the vertex set of G.

So no two vertices of either V_1 or V_2 are adjacent in G.We know that G contains no odd cycles (see [2]) Case 1: Suppose G has no even cycles.

Hence follows that G is acyclic. Assigning one colour to the vertices of V_1 and another colour to the vertex of V_2 , we get a 2-proper colouring of G.Now follows that

$$\chi_a(G) = 2$$
, since G is acyclic; Thus $\chi_a(G) = \chi(G) = 2$

Case 2: Suppose G has an even cycle.

Let there be m even cycles; say $C_1, \dots C_m$. Let v_j be a vertex of C_j $(j = 1, \dots m)$ Denote $V_3 = \{v_1, \dots, v_m\}$.

Assign one colour to the vertices of $V_1 - V_3$, a second colour to the vertices of $V_2 - V_3$ and a third colour to the vertices of V_3 .

Now all the sub graphs generated by either $\{V_1 - V_3\} \cup \{V_3\}, \{V_2 - V_3\} \cup \{V_3\}$ and $\{V_1 - V_3\} \cup \{V_2 - V_3\}$ are acyclic.(by the selection of V_3).

So follows that $\chi_a(G) = 3 = \chi(G) + 1$.

This completes the proof of the theorem.

3.4. Theorem: For the star $S_{n+1}(n \ge 1), \chi_a(S_{n+1}) = 2 = \chi(S_{n+1})$. Proof: Let $V(S_{n+1}) = \{v_0, v_4 \dots v_n\}$ where v_0 is the centre of S_{n+1} .

This is a bipartite graph with a bipartition $\{V_1, V_2\}_{,\text{where}} V_1 = \{v_0\} \text{ and } V_2 = \{v_1, \dots, v_n\}_{.\text{Since}}$ the graph has no cycles and $\chi(S_{n+1}) = 2_{\text{it follows that}} \chi_a(S_{n+1}) = 2 = \chi(S_{n+1})_{.}$

3.5. Theorem : For the wheel $W_{n+1}(n \ge 3)$

$$\chi_a(W_{n+1}) = 4 = \begin{cases} \chi(W_{n+1}) + 1 \text{ if n is even} \\ \chi(W_{n+1}) \text{ if n is odd.} \end{cases}$$

Proof: Let the vertex set of W_{n+1} be $\{v_0, v_1, v_2 \dots v_n\}$, where v_0 is the center of W_{n+1} .

We can write $W_{n+1} = K_1 \lor C_n$ (see [2]) where $V(K_1) = \{v_0\}$ and $V(C_n) = \{v_1, v_2, v_3...v_n\}$ Case 1: Suppose n is even. Since $\chi(C_n) = 2$; by assigning a third colour to $\{v_0\}$,

We get a proper 3-colouring to W_{n+1} and further $\chi(W_{n+1}) = 3$

By assigning a fourth colour to a vertex of C_n , we get a proper 4-colouring of W_{n+1} such that any sub graph of W_{n+1} induced by two colour classes is acyclic.

Hence $\chi_a(W_{n+1}) = 4 = \chi(W_{n+1}) + 1$.

Case 2: Suppose n is odd. Since $\chi(C_n) = 3$, by assigning a fourth colour to the vertex v_0 , we get a proper 4colouring of W_{n+1} and so $\chi(W_{n+1}) = 4$. Further, we observe that any subgraph of W_{n+1} induced by two colour classes is acyclic.(we need at least three colour classes to a cycle). Hence follows that $\chi_a(W_{n+1}) = 4 = \chi(W_{n+1})$, when n is odd.

This completes the proof of the theorem.

IV. CHROMATIC NUMBERS OF TENSOR PRODUCTS OF STANDARD GRAPHS

We first give the following:

4.1. Definition: [5] Let G, H be vertex disjoint graphs. Then the Tensor product of G and H,denoted by $G \wedge H$, is the graph whose vertex set is $\{(u,v): u \in V(G), v \in V(H)\}$ and the edge set being the set of all elements of the form (u,v)(u',v') where $u,u' \in V(G), v,v' \in V(H)$ and $uu' \in E(G) \& vv' \in E(H)$

(Observe that if G and H are simple graph then so is $G \wedge H$).

4.2.Result:[5] If G_1 and G_2 are connected graphs then $G_1 \wedge G_2$ is connected iff either G_1 or G_2 contain an odd cycle.

4.3.Result [3]: For $n \ge 3, K_2 \land K_n$ is a connected , bipartite graph with 2n vertices and n(n-1) edges. Further $K_2 \land K_3 = C_6$

4.4. Theorem: For $n \ge 3$, $\chi_a(K_2 \land K_n) = 3 = \chi(K_2 \land K_n) + 1$

Proof: By Results (4.2) and (4.3) , it follows that $K_2 \wedge K_n$ is connected and bipartite.

Let
$$V(K_2) = \{u_1, u_2\}$$
 and $V(K_n) = \{v_1, v_2, v_3, ..., v_n\}$.

A bipartition of $V(K_2 \wedge K_n)$ is $\{V_1, V_2\}$

where
$$V_1 = \{(u_1, v_j): j = 1, 2, ...n\}$$
 and $V_2 = \{(u_2, v_j): j = 1, 2, ...n\}$

Case (i): Let n = 3

By theorem [3.2], it follows that

$$\chi_a(K_2 \wedge K_3) = \chi_a(C_6) = \chi(C_6) + 1 = \chi(K_2 \wedge K_3) + 1$$

Case 2: Let $n \ge 4$; by assigning one colour to the class V_1 and another colour to the class V_2 we get a 2-proper colouring of $K_2 \land K_n$ and this is a minimum proper colouring ,so $\chi(K_2 \land K_n) = 2$. Clearly $\{(u_1v_1), (u_2, v_2), (u_1v_3), (u_2v_4), (u_1v_1)\}$ is a cycle in $K_2 \land K_n$. Let there be 'k' cycles say $W_1, W_2, ..., W_k$ in $K_2 \land K_n$. Let $x_i \in V(W_i)(i=1,2,...k)$ Denote $V_3 = \{x_i : i=1,2,...m\}$; assign a third colour to the class V_3 . Now as in the proof of Theorem (3.2), we get that $\chi_a(K_2 \land K_n) = 3 = \chi(K_2 \land K_n) + 1$.

This completes the proof of the theorem.

4.5. Result:[3]: If m,n are integers such that min $\{m,n\} \ge 2$ and max $\{m,n\} \ge 3$ then $K_m \wedge K_n$ is a simple, connected, (m-1)(n-1)-regular graph with mn vertices and hence $\frac{1}{2}mn(m-1)(n-1)$ edges. (A graph is said to be r-regular if and only iff the degree of each vertex is r).

4.6. Theorem: For integers $m, n \ge 2$ and $max\{m, n\} \ge 3$, $\chi(K_m \land K_n) = \min\{m, n\}$

Proof: By the above result $K_m \wedge K_n$ is a connected graph. Let $V(K_m) = \{u_1, u_2...u_m\}$

and
$$V(K_n) = \{v_1, v_2 ... v_n\}$$

 $V(K_{m} \wedge K_{n}) = \left\{ \left(u_{i}, v_{j}\right) : i = 1, 2, ...m; j = 1, 2, ...n \right\} \text{ since } K_{m}, K_{n} \text{ are complete graphs follows that } \left(u_{i}, v_{j}\right) and \left(u_{i}', v_{j}'\right) \text{ are adjacent in } K_{m} \wedge K_{n} \text{ for } i, i' \in \{1, 2, ..., m\}, j, j' \in \{1, 2, ..., n\} \text{ with } i' \neq i \text{ and } j' \neq j$

Without loss of generality we can assume that $m = \min\{m, n\}$

Denote
$$V_i = \{(u_i, v_j : j = 1, 2, ..., n)\} (i = 1, 2, ..., m)$$

By the definition of $K_m \wedge K_n$, it follows that $\{V_i : i = 1, ..., m\}$ are all independent sets (no two elements of V_i are adjacent in $K_m \wedge K_n$). By the selection of 'm', it follows that this is the smallest sub division of $V(K_m \wedge K_n)$; Assigning distint (m)colours to these V_i 's, it follows that this is a proper colouring of $K_m \wedge K_n$ and m is the smallest positive integer of the proper colourings. So by definition, it follows that $\chi(K_m \wedge K_n) = m = \min\{m, n\} = \min\{\chi(K_m)\chi(K_n)\}$ (by Theorem (3.1)).

4.7. Observation: $\chi_a(K_3 \wedge K_3) = 3 = \chi(K_3 \wedge K_3)$, since the sub graph generated by any two colour classes of $K_3 \wedge K_3$ is acyclic.

4.8. Open Problem: To find the value of $\chi(K_m \wedge K_n)$, when $m, n \ge 3$ and one of m, n is ≥ 4 4.9.Result[4]:For $m, n \ge 3$, $C_m \wedge C_n$ is a simple ,4-regular,connected bipartite graph iff one of m,n is even and other is odd. 4.10. Theorem : For $m, n \ge 3$ and m, n are of different parity (one is even and the other is odd), $\chi_a(C_m \wedge C_n) = 3 = \chi(C_m \wedge C_n) + 1$.

Proof: By the above result ,it follows that $C_m \wedge C_n$ is a connected, bipartite graph with a bipartition, say $\{V_1, V_2\}$ of the vertex set. So, by assigning two distint colours to the classes V_1 and V_2 , we get a 2-proper colouring of $C_m \wedge C_n$. Hence $\chi(C_m \wedge C_n) = 2$.

Let
$$V(C_m) = \{u_1, u_2, ..., u_m\}$$
 and $V(C_n) = \{v_1v_2, ..., v_n\}$.

Without loss of generality we can assume that m is odd \Rightarrow n is even

Let
$$V_1 = \{(u_i, v_j) : i = 1, 2, ...m; j = 1, 3, 5...n - 1\}$$
 and
 $V_2 = \{(u_i, v_j) : i = 1, 2, ...m; j = 2, 4, ...n\}$.
Now $\{(u_1v_1), (u_2, v_2)(u_1, v_3)(u_2, v_4), ...(u_1, v_{n-1}), (u_2, v_n)(u_1, v_1)\}$ is a cycle in $C_m \wedge C_n$

Let there be k cycles in $C_m \wedge C_n$. As in the proof of theorem (4.6), by choosing one vertex from each of the cycles and assigning a third colour to these vertices, we get a proper 3-colouring for the vertices of $C_m \wedge C_n$

 $C_m \wedge C_n$ such that any subgraph generated by two colour classes is acyclic. Hence follows that $\chi_a(C_m \wedge C_n) = 3 = \chi_a(C_m \wedge C_n) + 1$

4.11.Remark: Since $P_m, P_n(m, n \ge 2)$ are connected and acyclic, by result (4.2) it follows that $P_m \land P_n$ is disconnected. So , we are not discussing about acyclic chromatic number of such graphs.

REFERENCES

[3] I.H.N.Rao and K.V.S.Sarma, On Tensor Products of Standard Graphs, International Journal of Computational Cognition, Vol 8(2010), 94-98.

^[1] N.Alon, C.Mcdiarmid and B.Riad, Acyclic colouring of Graphs, Random Structures and algorithms (1991), 277-289.

^[2] A Bondy and Murthy, Graph theory with applications MacMillan Press limited (1976).

^[4] I.H.N.Rao and K.V.S.Sarma, On Tensor Products of Mixed Graphs, International Journal of Computational Cognition, [accepted].