
International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 3 May to June 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 38

Software Code Clone Detection using AST
G. Anil kumar

#1
 Dr. C.R.K.Reddy

*2
 Dr. A. Govardhan

#3

#1
research Scholar Jntuh & Sr.Asst. Prof Cse Mgit, Hyderabad

*2
prof. of CSE CBIT , Hyderabad

#3
director & Prof. of CSE, Sit, JNTUH, Hyderabad

Abstract— The research which exists suggests that a

considerable portion (10-15%) of the source code of

large-scale computer programs is duplicate code.

Detection and removal of such clones promises

decreased software maintenance costs of possibly the

same magnitude. Previous work was limited to

detection of either near misses differing only in single

lexemes, or near misses only between complete

functions. This paper presents simple and practical

methods for detecting exact and near miss clones over

arbitrary program fragments in program source code

by using abstract syntax trees. Previous work also did

not suggest practical means for removing detected

clones. Since our methods operate in terms of the

program structure, clones could be removed by

mechanical methods producing in-lined procedures or

standard preprocessor macros.A tool using these

techniques is applied to a C production software

system of some 500K source lines, and the results

confirm detected levels of duplication found by

previous work. The tool produces macro bodies

needed for clone removal, and macro invocations to

replace the clones. The tool uses a variation of the

well-known compiler method for detecting common

sub-expressions. This method determines exact tree

matches; a number of adjustments are needed to detect

equivalent statement sequences, commutative

operands, and nearly exact matches. We additionally

suggest that clone detection could also be useful in

producing more structured code, and in reverse

engineering to discover domain concepts and their

implementations.

Keywords— Software maintenance, clone detection,

software

evaluation, Design Maintenance System.

I. INTRODUCTION

The data from the previous work says that

duplicated code is a considerable fraction i.e.10-15%

of the source of large computer programs[2][9].

Adhoc reuse is routinely performed by programmers

by brute-force copying code fragments. These enable

implementation of actions similar to their current need

and helps in performing a cursory customization of the

copied code to the new context.

The act of copying suggests that the programmer

has the intention to reuse the implementation of some

abstraction. Encapsulation which is the software

engineering principle is broken by the act of pasting.

The unstructuredness and commonness suggest that

programmers should be offered tools which enable

them to make use of implementations of abstractions

without breaking encapsulation.

There can be a decrease in the cost of the software

maintenance apart from the reduction in code size, if

in-lined procedure calls, macros or other equivalent

short hand methods are used to detect and replace

redundant code. The present software engineering

focuses on how to find small percentage process gains.

This is a mechanical method inorder to achieve upto

10% savings.

A program fragment which implements a

recognizable concept i.e. data structure or computation

is an idiom. A fragment is a clone. A fragment which

is nearly identical to another is a near miss clone.

When an idiom is optionally edited and copied, clones

occur with the production of exact or near miss clones.

Clone detection is not only helpful in producing

more structured code but also in discovering domain

concepts and their idiomatic implementations.

There were limitations to clone detection,

previously clone detection used to detect textual

matches or near miss clones only on complete

function bodies. This paper enables practical methods

with the help of abstract syntax trees. This helps in the

detection of exact and near miss clones for the

arbitrary fragments of program source code. By using

conventional transformational methods clones can be

factored out of the source code. This becomes feasible

since detection is in terms of the program structure.

A tool which uses these detection techniques is

applied to a java production software system of some

500k SLOC and the results showed detection levels of

duplication found by previous work.

A variation of the well-known compiler method is

used by the tool for the detection of common sub-

expressions [1]. This enables exact tree matches

essential to detect clones in the context of

commutative operands, near misses and statement

sequences.

II. OCCURRANCES OF CLONES

Software clones appear for many reasons:

1. Code reuse by copying existing codes.

2. Coding styles of the programmers.

3. Instantiations of definitional computations.

4. Failure to identify/use abstract data types.

5. Performance enhancement.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 3 May to June 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 39

6. Accidental clones.

The design processes and formal reuse methods are

structured by the state of the art software design. Less

structured means are used to construct legacy code.

New functionalities are implemented by programmers

to find some code idiom. The idiom performs a

computation which is identical to the one desired. It

also copies and modifies the idiom. The ubiquity of

this event is hastened by the functions of copy and

paste.

Inorder to produce modules which have different

variants, this method is used in large systems. When

device drivers are built for operating systems,

maximum code is boiler plate. The only part which

needs to be changed is the device hardware of the

driver. Usually, a device driver author copies an

entirely an existing well-known, trusted driver and he

will modify it simply. Generally, it is a good reuse

practice. However, it exacerbates the problem of

maintenance of fixing a bug found in the trusted driver

by code replicating over many new drivers.

At times, a style for coding a regularly needed code

fragment will arise like error reporting or user

interface displays. Inorder to maintain the style, the

fragment is copied. When this is done the fragment

consists only of parameters. However, this is a good

practice. Sometimes, the fragment unnecessarily

contains more knowledge of some program data

structure, etc.,

The repeated computations are simple and

definitional. As a result, even if copying is not used, a

programmer can use a mental macro to write. When

he writes, the same code needs to be carried out. If at

all if there is frequency in mental operation, he may

develop a regular style of coding it. Near miss clones

are produced by mental macros. The code has

irrelevant order and variable names.

Some clones have complete duplicates of functions.

These are intended to be used on another data

structure of the same type. There are many systems

with poor copies. They have insertion sort on different

arrays scattered around the code. All such clones give

an indication that the data type operation should be

supported by reusing a library function instead of a

pasting a copy.

There are justifiable performance reasons for which

some clones exist. Systems which have tight time

constraints are often handoptimized by replicating

frequent computations. This is done when a compiler

does not offer in living of arbitrary expressions or

computations.

Finally, there are occasional code fragments that are

accidentally identical, but actually they are not clones.

When proper investigation is done, such clones are not

intended to carry out the same computation. The

number of accidents of this type will come down

dramatically, as the size goes up.

When the accidental clones are ignored, the mass of

the code increases because of the presence of clones in

code unnecessarily. This compels programmers to

inspect more code than necessary, and as a result the

cost of software maintenance increased. Such clones

can be replaced by invocations of clone abstractions,

when the clones can be found with potentially great

savings.

III. METHODOLOGY

A. Clone Detection Using ASTs

The discovery of code fragments which compute

the similar result is the basic problem in clone

detection. For this, first the program in parts must be

fragmented before comparison. Then, it has to be

determined as impossible, two arbitrary program

fragments halting under the same circumstance is not

determined. Hence, it is impossible theoretically to

finalise that they compute identical results. The deep

semantic analysis which is conservatively bounded by

time limits is acceptable for equivalence detection as

false negatives are unavoidable. There will be

infrastructure requirement in the form of semantic

definitions, theorem provers etc., Practically, detection

of complete semantic equivalence should be given up

because many clones evolve due to copy and paste

editing processes.

When false positives are not produced simpler

definitions of equivalent code may suffice. This

denotes that clone detection can be done using more

syntactic methods. The source lines of code can be

compared. It is assumed that the cloning process has

not introduced any changes as per source line equality.

Clone detection is limited to exact matches without

any changes in identifiers, comments, spacing, or

other non –semantic changes. As a result, it fails to

trace near miss clones. Hence, a practical possibility

would be to compare program representation in which

control and data flows are explicit, closer to full

semantics.

The building of transformational tools in order to

modify large software systems is semantic designs [4].

As a first step, such tools typically parse source

programs into ASTs before transformation. The

comparison of syntax trees is chosen for investigation

because of the early product state of our tools. This

had the advantage of directly avoiding uninteresting

changes at the lexical level.

There are some steps in the process of clone

detection. First, the source code is parsed and an AST

is produced for it. Next, three main algorithms are

applied to find clones. The purpose of the basic

algorithm, which is the first algorithm, is to detect sub

–tree clones. The second algorithm is sequence

detection algorithm. This algorithm helps in the

detection of variable –size sequences of sub –tree

clones. This is helpful in the detection of statement

and in the declaration of sequence clones. The third

algorithm attempts to generalize combinations of other

clones and looks for more complex near miss clones.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 3 May to June 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 40

Clone removal is not carried out, but the remaining

detected clones can be printed.

B. Finding sub –tree clones

In principle, finding sub-tree clones is easy:

compare every subtree to every other sub-tree for

equality. In practice, several problems arise: near-miss

clone detection, sub-clones, and scale. Near misses we

handle by comparing tress for similarity rather than

exact equality. The sub-clone problem is that we wish

to recognize maximally large clones, so clone subtrees

of detected clones need to be eliminated as reportable

clones.

 The scale problem is harder. For an AST

of N nodes, this comparison process is O(N^3), and,

empirically, a large software system of M lines of

code has N=10*M AST nodes (if we consider

comparing sequences of trees, the process is O(N^4)!).

Thus, the amount of computation becomes

prohibitively large.

 In order to tackle this problem it is

possible to partition the sets of comparisons by

categorizing sub-trees with hash values. The approach

is based on the tree matching technique for building

DAGs for expressions in compiler construction [1].

This allows the straightforward detection of exact sub-

tree clones. If we hash sub-trees to B buckets, then

only those trees in the same bucket need be compared,

cutting the number of comparisons by a factor of B.

We choose a B of approximately the same order as N;

in practice, B=10% N means little additional space at

great savings in terms of computation. We have found

that the cost of comparing individual trees averages

close to a constant, rather than O(N), and so hashing

allows this computation to occur in practice in time

O(N).

 This approach works well when we are

finding exact clones. When locating near-miss clones,

hashing on complete subtrees fails precisely because a

good hashing function includes all elements of the tree,

and thus sorts trees with minor differences into

different buckets. We solved this problem by choosing

an artificially bad hash function. This function must

characterized in such a way that the main properties

one wants to find on near-miss clones are preserved.

As we described in Section 2, near miss clones are

usually created by copy and paste procedures followed

by small modifications. These modifications usually

generate small changes to the shape of the tree

associated with the copied piece of code. Therefore,

we argue that this kind of near-miss clone often has

only some different small sub-trees. Based on this

observation, a hash function that ignores small sub-

trees is a good choice. In the experiment presented

here, we used a hash function that ignores only the

identifier names (leaves in the tree). Thus our hashing

function puts trees which are similar modulo

identifiers into the same hash bins for comparison.

 Rather than comparing trees for exact

equality, we compare instead for similarity, using a

few parameters. The similarity threshold parameter

allows the user to specify how similar two sub-trees

should be. The similarity between two sub-trees is

computed by the following formula:

Similarity = 2 x S / (2 x S + L + R)

where:

S = number of shared nodes

L = number of different nodes in sub-tree 1

R = number of different nodes in sub-tree 2

 The mass threshold parameter specifies

the minimum subtree mass (number of nodes) value to

be considered, so that small pieces of code (e.g.,

expressions) are ignored.

 We combine these methods to detect sub-

tree clones, giving the Basic clone detection algorithm

in algorithm 1. The Basic algorithm is straightforward.

In Step 2, the hash 4 codes for each sub-tree are

computed to place them in the respective hash bucket.

This step ignores small subtrees, thus implementing

the mass threshold in a way that further reduces the

number of comparisons required considerably, as the

vast majority of trees are small. After that, every pair

of sub-trees located in the same hash bucket is

compared, if the similarity between them is above the

specified threshold, the pair is added to the clone list,

and all respective sub-clones are removed.

 The algorithm is shown in the algorithms

section Basic Sub-tree Clone Detection Algorithm.

C. Finding clone sequences

The preceding section shows how to detect clones

as trees, and is purely syntax driven. In practice, we

are interested in code clones that have some semantic

notion of sequencing involved, such as sequences of

declarations or statements. In this section, we show

how to detect statement sequence clones in ASTs

using the Basic algorithm as a foundation.

 Such sequences show up in ASTs not as

arbitrary trees, but rather as right- or left-leaning trees

with some kind of identical sequencing operator as

root. Sequences of subtrees appear in AST as a

consequence of the occurrence in the dialect grammar

of rules encapsulating sequences of zero or more

syntactic constructs. These sequence rules are

typically expressed by the use of left or right recursion

on production rules. When a parser generator produces

parsers that automatically generate AST, it is common,

as in our case, that the trees have a left-leaning shape.

Consider Figure 1, which shows a pair of short

sequences of statements along with their

corresponding trees. Note that the left-leaning tree

reverses the order of the statements because of the

order in which the parse reductions are done as

determined by the controlling grammar rule. In this

example, nodes labeled with a ”;” are sequence nodes

for statements belonging to a compound statement.

Because a generic clone detector has no idea which

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 3 May to June 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 41

tree nodes constitute sequence nodes, these nodes

must be explicitly identified to the clone detector.

void i () void j ()

{ {

p=0; y=2;

q=1; q=1;

r=2; r=2;

s=3; s=3;

w=4; h=5;

} }

Fig. 1 Example of clone sequence

Such sequences of sub-trees are not strictly trees,

and consequently require a special treatment. In

Figure 2, the Basic algorithm finds three clones

corresponding to the assignment statements for

variables a, b and c. But, it is unable to detect the

clone sequence, because it is not a single sub-tree, but

rather a sequence of sub-trees. The sequence detection

algorithm copes with this problem by comparing each

pair of sub-trees containing sequence nodes, looking

for maximum length sequences that encompasses

previously detected clones. Short sequences

(especially those of length one) are not interesting

sequence clones. A minimum-sequence length

threshold parameter controls the minimum acceptable

size of a sequence.

void i ()

{

p=0;

if (d>1)

{

y=1;

z=2;

}

else

{

x=2;

z=1;

y=3;

}

}

The program has three sequences.

List Structure:

1. {p=0; if(d>1) … }

hash codes = 675, 3004

2. {y=1; z= 2;}

hash codes = 1020,755

3. {x=2; z=1; y=3;}

hash codes = 786, 756, 704

Fig. 2 Example of list structure

To find sequence clones, we build a list structure

where

each list is associated with a sequence in the

program, and stores the hash codes of each sub-tree

element of the associated sequence. Figure 2 shows an

example of the list structure that is built. This list

structure allows us to compute the hash code of any

particular subsequence very quickly.

 This algorithm compares each pair of sub-

trees containing sequence nodes looking for the

maximum length of possible sequencing that

encompasses a clone. Whereas the Basic algorithm

finds three clones in Figure 1, the sequence detection

algorithm finds the sequence comprising the

assignments for variables a, b and c as a single clone.

Following the requirement that larger clones subsume

smaller ones, detecting this sequence immediately

invalidates the clone status of the atomic statements

found as clones by the Basic algorithm.

 The algorithm is shown in the

algorithms section’s Sequence detection algorithm.

D. Generalization

After finding exact and near-miss clones, we use

another method (Figure 5) to detect more complex

nearmiss clones. The method consists of visiting the

parents of the already-detected clones and check if the

parent is a near miss clone too. We also delete

subsumed clones. Note that the details related

regarding sequence handling have been omitted for

clarity.

 A significant advantage of this method

is that any near miss clones must be assembled from

some set of exact sub clones, and therefore no near-

miss clones will be missed. (Since acceptance of the

paper, we have developed a new version of the clone

detector that uses only exact clone hashing on small

sub trees, sequence detection and this generalization

method. This new version has better performance and

detects any kind of near miss clones.

 The detected clone set is the union of

sequence clones and the results of the clone

generalization process. After all clones were detected,

we generate a macro that abstracts each pair of clones.

Figure 5 shows an example of near miss sequence

clones detected by the tool in the application discussed

in the next section. Figure 5 shows the macro

generated by the clone detector for the clones in

Figure 5. Trivial syntax modifications can turn this

into legal C pre-processor directives, and the detected

clones could be removed since the tool knows their

source.

 In the last step, the tool tries to group

instances of the same clone in order to provide

additional feedback on the number of instances of

each clone. The clones are divided in-groups

following the first fit approach; i.e. a clone is inserted

in the first group where it is a clone of all instances

already inserted.

 The algorithm is shown in the

algorithms section as Detecting more complex clones.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 3 May to June 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 42

IV. ALGORITHMS

Basic Sub-tree Clone Detection Algorithm

 compare every subtree to every other sub-

tree for equality. The sub-clone problem is that we

wish to recognize maximally large clones, so clone

subtrees of detected clones need to be eliminated as

reportable clones. Rather than comparing trees for

exact equality, we compare instead for similarity,

using a few parameters

Sequence detection algorithm

 This algorithm compares each pair of sub-

trees containing sequence nodes looking for the

maximum length of possible sequencing that

encompasses a clone. Following the requirement that

larger clones subsume smaller ones, detecting this

sequence immediately invalidates the clone status of

the atomic statements found as clones by the Basic

algorithm.

Detecting more complex clones

 In the last step, the tool tries to group

instances of the same clone in order to provide

additional feedback on the number of instances of

each clone.

V. RESULTS AND DISCUSSIONS

The clone detector tool was applied to a process

control system having java code. The figure 3 shows

the overview of our tool which takes the files (java

only) as inputs. The results are shown in detail after

the processing of our tool in the region provided

below the processing space.

 The figure 4 shows how the tool will

represent and show the result of a particular detection

between 2 java source files. The coding is in such a

way that the ASTs will be automatically built in the

tool, processed and the line by line detection of the

clones will be produced in the space of the tool as

shown in the figure.

 Here we have applied the tool to the

files of type I and II. The type I clones are the

clones which are exact to each other in every

means i.e the both clones are mirror images of

each other. These are very easy to detect

through our tool which constructs the ASTs and

compares the both clones. The type II clones are

the codes which nearly similar to each other i.e

near miss clones. To use the tool we simply

click on the browse button on the tool and select

our destination file, then click on the process

button to detect the clones in our source files.

The results are shown in the fig.4.Thus we have

applied our tool on the java platform and in the

future we could also go for comparison and

detection of type III and type IV clones.

Fig. 3 The clone detector tool

Fig. 4 clone detection applied

VI. CONCLUSIONS

The

References
[1] Alfred Aho, Ravi Sethi and Jeffrey Ullman, Compilers,

Principles, Techniques and Tools, Addison-Wesley 1986.

[2] Brenda Baker, On Finding Duplication and Near-

Duplication in Large Software Systems, Working Conference

on Reverse Engineering 1995, IEEE.

[3] P. Barson, N. Davey, S. Field, R. Frank, D.S.W. Tansley,
Dynamic Competitive Learning Applied to the Clone

Detection Problem, Proceedings of International Workshop

on Applications of Neural Networks to Telecommunications
2, 0-8058-2084-1, Lawrence Erlbaum, Mahwah, NJ 1995.

[4] Ira Baxter and Christopher Pidgeon, Software Change
through Design Maintenance, International Conference on

Software Maintenance, 1997, IEEE.

[5] Jean-Marc DeBaud, DARE: Domain- Augmented

Reengineering, Working Conference on Reverse Engineering,

1997, IEEE.

[6] K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and M.

Bernstein, Pattern Matching for Clone and Concept
Detection, Journal of Automated Software Engineering 3,

77-108, 1996, Kluwer Academic Publishers, Norwell,

Massachusetts.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 3 May to June 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 43

[7] J.H. Johnson, Substring Matching for Clone Detection and
Change tracking, Proceedings of the International

Conference on Software Maintenance 1994, IEEE.

[8] H. Johnson, Navigating the Textual Redundancy Web in

Legacy Source, Proceedings of CASCON ’96, Toronto,

Ontario, November 1996.

[9] B. Lague, D. Proulx, E. Merlo, J. Mayrand, J. Hudepohl,

Assessing the Benefits of Incorporating Function Clone
Detection in a Development Process, International

Conference on Software Maintenance 1997, IEEE.

[10] Generalized LR Parsing, Masaru Tomita ed., 1991, Kluwer

Academic Publishers, Norwell, Massachusetts

[11] Tim Wagner and Susan Graham, Incremental Analysis of

Real Programming Languages, Proceedings 1997 SIGPLAN

Conference on Programming Language Design and
Implementation, June 1997, ACM

