
International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 1 Jan to Feb 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 22

Identifying Spam in Mobile Ad Networks using

Latent Class Model

 M. Sree Vani

Dept of CSE, MGIT, Gandipet, Hyderabad -500075

Abstract

 Smart phone Apps plays a vital role to attract

mobile-Advertising. Popular apps can generate millions

of dollars in profit and collect valuable personal user

information. spam, i.e., fraudulent or invalid tap or

click on online ads, where the user has no actual

interest in the advertiser’s site, results in advertising

revenue being misappropriated by spammers. It

requires a user touch or click on control ads came from

Smartphone-game Apps. It all need the user to tap the

screen close to where the ad is displayed .While ad

networks take active measures to block click-spam

today, but not in mobile advertising. The presence of

spam in mobile advertising is largely unknown. In this

paper, we take the first systematic look at spam in

mobile advertising. We propose a methodology to

identify spam Apps in Smartphone-game Apps. We

validate our methodology using data from major ad

networks. Our findings highlight the severity of the

spam in mobile advertising.

Keywords : Spam, mobile apps, click spam.

I. INTRODUCTION

Mobile advertisements within the apps are

only source of revenue for several mobile app

publishers. Maximum of the apps in the major mobile

app stores show ads [1]. To embed ads in an app, the

app developer typically registers with a third-party

mobile ad network such as AdMob [2], iAd [3],

Microsoft Mobile Advertising [4] etc. The ad net-

works supply the developer with an ad control (i.e.

library with some visual elements embedded within).

The developer includes this ad control in his app, and

assigns it some screen real estate. When the app runs,

the ad control is loaded, and it fetches ads from the ad

network and displays it to the user. Different ad

networks use different signals to serve relevant ads.

One of the main signals that mobile ad networks use

today is the app metadata [24]. As part of the

registration process, most ad networks ask the

developer to provide metadata information about the

app (for e.g. category of the app, link to the app store

description etc.). This allows the ad network to serve

ads related to the app metadata. Ad networks also

receive dynamic signals sent by the ad control every

time it fetches a new ad. Depending on the privacy

policies and the security architecture of the platform,

these signals can include the location, user identity, etc.

Note that unlike JavaScript embedded in the browsers,

the ad controls are integral parts of the application, and

have access to the all the APIs provided by the

platform.

A. Background on Mobile Advertising

A typical mobile advertising system has five

participants: mobile clients, advertisers, ad servers, ad

exchanges and ad networks as Figure 2 shows. A

mobile application includes an ad control module (e.g.,

AdControl for Windows Phones, AdMob for Android)

which notifies the associated ad server any time an ad

slot becomes available on the client’s device. The ad

server decides how to monetize the ad slot by

displaying an ad. Ads are collected from an ad

exchange. Ad exchanges are neutral parties that

aggregate ads from different third party ad networks

and hold an auction every time a client’s ad slot

becomes available. The ad networks participating in the

exchange estimate their expected revenue from showing

an ad in such an ad slot and place a bid on behalf of

their customers (i.e., the advertisers). An ad network

attempts to maximize its revenue by choosing ads that

are most appropriate given the context of the user, in

order to maximize the possibility of the user clicking on

the ads. The ad network receives information about the

user such as his profile, context, and device type from

the ad server, through the ad exchange. Ad exchange

runs the auction and chooses the winner with the

highest bid. Advertisers register with their ad networks

by submitting an ad campaign. A campaign typically

specifies an advertising budget and a target number of

impressions/clicks within a certain deadline (e.g.,

50,000 impressions delivered in 2 weeks).

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 1 Jan to Feb 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 23

Figure 1. Architecture of a Typical Mobile ad System.

They can also specify a maximum cap on how

many times a single client can see a specific ad and

how to distribute ads over time (e.g., 150 impressions

per hour). The ad server is responsible for tracking

which ads are displayed and clicked, and thus

determining how much money an advertiser owes. The

revenue of an ad slot can be measured in several ways,

most often by views (Cost Per Impression) or click-

through (Cost Per Click), the former being most

common in mobile systems. The ad server receives a

premium on the sale of each ad slot, part of which is

passed to the developer of the app where the ad was

displayed.

B. Background and Motivation for Spam in Mobile

Advertising

A mobile developer accidentally (or

intentionally) places the in-app advertising control close

to where the user must tap, or drag on usage of mobile.

Given the tiny screen real-estate, the user is prone to

mistapping. When he does so, the browser navigates to

the ad-click URL. The user may realize his error and

switch back to the game. The browser, which in the

mean time has already begun fetching the ad landing-

page, aborts the attempt. As a result, the user will

appear to have spent very little time on the advertiser’s

page. We saw exactly this behavior on our mobile ads

—95% of users spent less than a second as mentioned

earlier.

The core issue here is the advertiser being

charged despite the user not spending any time on the

landing page. It is hard for an ad network to know how

long the user spent on the advertiser’s site. If it relied

on the advertiser to get this information, the advertiser

could easily lie to get a discount. Solving this without

modifying the browser, and without hurting the user

experience is a non-trivial problem. One mitigating

approach would be to audit apps that trick users into

mistapping on the ad. Doing so would likely spark an

arms race for apps intentionally exploiting this loop-

hole, but would at least protect advertisers from apps

accidentally triggering this. Unfortunately, ad networks

are making it harder for advertisers and independent

third-parties to identify bad apps.

Having identified the spam problem, in this paper we

propose a new framework for spam detection in mobile

Apps. We propose a novel set of features particular to

the mobile user gaming experience based features. We

validate our methodology using data from major ad

networks. We demonstrate the effectiveness of our

approach via experiments on a datasets consist of all

selected game apps crawled from the Apple iOS App

Store in 2012. We conduct various experiments with

our datasets. We would like to detect as many spam

posts as possible while avoiding misclassifying non-

spam posts as spam ones. Our approach gives us the

best performance in terms of precision and recall, F-1

measure.

The rest of the paper is organized as follows.

In Section 2, we review approaches for click spam

detection in previous work. In Section 3, we introduce

our methodology for spam detection in Mobile Apps.

Section 4 presents novel set of features used in the

classifier. Section 5 describes our experiment setup and

shows experimental results. Finally, our conclusions

and future directions are presented in Section 6.

II. RELATED WORK

Existing works on ad fraud mainly focus on

the click-spam behaviors, characterizing the features of

click-spam, either targeting specific attacks [5, 6, 16,

18], or taking a broader view [7]. Some work has

examined other elements of the click-spam ecosystem:

the quality of purchased traffic [19, 20], and the spam

profit model [12, 13]. Very little work exists in

exploring clickspam in mobile apps. From the

controlled experiment, authors in [7] observed that

around one third of the mobile ad clicks may constitute

click-spam. A contemporaneous paper [9] claimed that

they are not aware of any mobile malware in the wild

that performs advertising click fraud. DECAF focuses

on detecting violations to ad network terms and

conditions, and even before potentially fraudulent

clicks has been generated. With regard to detection,

most existing works focus on bot-driven click spam,

either by analyzing search engine query logs to identify

outliers in query distributions [52], characterizing

networking traffic to infer coalitions made by a group

of bot-driven fraudsters [14, 15], or authenticating

normal user clicks to filter out bot-driven clicks [10, 11,

49]. A recent work, Viceroi [8], designed a more

general framework that is possible to detect not only

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 1 Jan to Feb 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 24

bot-driven spam, but also some non-bot driven ones

(like search-hijacking).To the best of our knowledge,

ours is the first work to detect touch spam in mobile

apps.

III. METHODOLOGY

This section presents an overview of our

approach for spam detection in mobile Apps. We

propose a simple latent class model to capture the

relationship among the user gaming experience, app,

user, and developer. Figure 2 shows the structure of the

graphical model. For each entity of interest, we assign it

a feature node and a latent node which represents the

latent class. The latent class model assumes that the

feature is generated from the unobserved class, and is

independent of other nodes given the class.

Furthermore, we assume that the developer only

directly affects the app.

All latent class variables in this model are

chosen to be binary. Ia indicates good or bad apps, Id

indicates good or bad developers, Iu indicates normal or

malicious users, and Ie indicates truthful or spam

experiences. Table 1 summarizes the features and the

conditional probability model at each node.

Figure 2: Latent Class Model for user Experience,

User, App, and Developer.

Table 1: Features and CPD

IV. FEATURES

To build classifiers, we extract numerous

features from the App page. We first use an App

features. Then we extract App Developer features from

App. Then we do deeper analysis to extract more

mobile ad-control location based features including

ones using external sources of information.

A. App Features

Developers of spam apps (malicious

developers) are primarily interested in gaining

monetary profit or leaching valuable user data, such as

address book contacts. Popular, seemingly legitimate

apps can leak user data quietly [22, 23], so it is feasible

that spam apps would attempt to do the same. In the

App Store, each app has its own webpage, which

displays app price, screenshots, description, ratings and

text reviews left by users who downloaded the app, and

related metadata. Ratings are integer stars in the range

1-5. Similar to other online shopping platforms,

positive reviews are crucial for convincing potential

customers to purchase the app. We extract App features

from above information like App ID, Developer ID,

Price, Category ID, app popularity, Release Date,

Current Version.

B. Developer Features

For malicious game App developers,

spamming the App Store can be beneficial and is not

difficult. A mobile game developer accidentally (or

intentionally) places the in-app advertising control close

to where the user must swipe or tap, or drag things to,

in order to succeed in the game. Given the tiny screen

real-estate, the user is prone to miss tapping. When he

does so, the browser navigates to the ad-click URL.

Mobile app developers are incentivized to commit

such fraud since ad networks pay app publishers based

on impression count [25, 24, 26]. We extract Developer

features like Developer ID, Number of Apps, Avg App

Rating, Avg Number of App Versions, Avg Review

Helpfulness, and Proportion of Free Apps.

Node Features CPD

Fu User-avg-rating,user-num-rev Conditional

Gaussian

Fa App-avg-rating,app-num-rev C nditional

Guassian

Fe I(stars<=2) I(stars<=3)

I(stars<=4)

NA

Fd Dev-num-app,deb-avg-rating Conditional

Guassian

Ia,Id,I

u,Ie

Binary class indicator CPT

fd

fa
fu

fe

Id

Ia
Iu

Ie

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 1 Jan to Feb 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 25

C. User Experience Based Features

Ad networks usually impose strict guidelines

to advertisers on how ad controls should be used in

apps, documented in lengthy Publisher Terms and

Conditions. Based on these guidelines, we extract the

features relate to how and where the ad control is

placed from user exeriences. Ad networks impose

placement restrictions to prevent impression or click

inflation, while the advertiser may restrict what kinds of

content (i.e., ad context) the ads are placed with. For

instance, Microsoft Mobile Advertising stipulates that a

publisher must not ―edit, resize, modify, filter, obscure,

hide, make transparent, or reorder any advertising‖ and

must not ―include any Ad Inventory or display any ads

... that includes materials or links to materials that are

unlawful (including the sale of counterfeit goods or

copyright piracy), obscene,.‖ [28]. Similarly, Google

AdMob’s terms dictate that ―Ads should not be placed

very close to or underneath buttons or any other object

which users may accidentally click while interacting

with your application‖ and ―Ads should not be placed

in areas where users will randomly click or place their

fingers on the screen‖ [27].Violators may manipulate

the UI layout to inflate impressions, or increase none ad

screen real estate. From a large dataset of apps, we

extract the following features of misplacement of Ad-

control which are mainly leads to ad touch spam and

how these are vary with app rating, the category of the

app, and other factors.

Number of Ad-controls An app page may

contains too many ads , while Microsoft Advertising

allows at most 1 ad per phone screen and 3 ads per

tablet screen [28].Therefore, if any app contains the

number of viewable ads in a screen is more than k, the

maximum allowed number of ads then it is a violator.

Visibility of Ad-controls Hiding the Ads behind other

controls (e.g., buttons or images) or placed outside the

screen also violates the terms and conditions in [28,

27]. Developers often use this trick to give users the

feel of an ―ad-free app‖, or to accommodate many ads

in a page when ad networks visually inspect for ad

count violations.

We extract this feature from app page, if any

ad in the given page is (partially) hidden or unviewable.

For each ad, the detector first finds non-ad GUI

elements that overlap with the Ad. Then it checks if any

of these non-ad elements is rendered above the Ad. To

get this we are traversed depth-first order of the DOM

tree of app page.

Size of Ad-control, Changing size of Ads too

small for users to read, violates the terms and

conditions. We extract this feature from app page if any

ad in the given page is smaller than the minimal valid

size required by the ad network.

V. EXPERIMENTS

A. Datasets

The datasets consist of all selected users

experiences for selected apps crawled from the Apple

iOS App Store in 2012. From this data, we computed

metadata for apps, developers, and users who post their

gaming experiences. We obtained two datasets: the Top

gameApps(TGA) dataset containing user gaming

experiences and game App and the Entertainment &

Gaming(E&G) dataset containing user gaming

experiences and metadata for all apps in the

Entertainment and Gaming categories. In addition, we

created a third dataset, Labeled TGA, which contains a

randomly chosen subset of apps from TGA having

more than twenty user gaming experiences with app

spam binary labels acquired through manual inspection.

The size of each dataset is shown in Table 2.

Figure 3 shows CCDFs for the TGA and E&G

datasets. In Figure 3a, we observe that the CCDFs go at

integer rating values, with noticeable drops

immediately before these values. As expected, the TGA

CCDF remains higher than the E&G CCDF at all rating

levels in this plot, with the difference increasing with

rating. This is because the TGA dataset contains many

of the best apps in the entire store, while the E&G

dataset simply contains all apps from two categories.

Table 2: Sizes of Top Apps (TGA), Entertainment

&Gaming (E&G), and Labeled E&G datasets.

 TGA E&G Labeled E&G

#Apps 690 2,400 114

#user

gaming

Exeriences

4,416,800 35,035 33,130

#Users 2,217,500 32,700 32,900

#Develoers 350 2000 100

Also, the drop near 4.5 in the TA CCDF

(circled in red) indicates that many users would find an

intermediate rating between 4 and 5 useful for

delineating the very best apps. Figure 3b conforms this

near the 4.5 rating level and also shows how the best

apps differ from the rest.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 1 Jan to Feb 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 26

B. Results

As a baseline method to classify app spam, a

pruned Decision Tree was trained on app and developer

features from the Labeled E&G dataset. In addition to

the decision tree, we tested our method. For simplicity

and interpretability, we choose the two most common

used features for each observed node. We choose

Linear Gaussian to model the conditional probability of

a feature node given its latent class. We also simplify

the user experience feature to be a class indicator of

high, middle and low. Hence, it is convenient for us to

put priors on the CPT based on heuristics such as if

conditioning on a dishonest user, a high quality app,

and a low experience, the app is more likely to be spam.

Figure 3: CCDFs from the E&G (blue) and TGA (green)

Datasets.

Table 4: Learned Parameters on Latent Nodes. The first

Column Contains the Value of the Variable.

 P(Iu) P(Id) P(Ia /Id

=0)

P(Ia /Id

=1)

0 0.11 0.13 0.92 0.17

1 0.87 0.87 0.09 0.85

The unsupervised learning is run on the E&G

dataset. The goal is to cluster reviews using the latent

node Ir. We start with a uniform prior for Ia, Id, Iu. We

set a prior on P (Ie/Ia, Iu, fe) to encode common beliefs

on a user gaming experiences truthfulness based on

user's honesty, user experiences rating, and app's

quality. We run Expectation Maximization [3] for 6

iterations with a Junction Tree inference algorithm

provided by the Bayesian Network Toolbox (BNT) [8].

Note that, although our goal is to cluster spam

experiences, having other latent nodes in the model

provides a clustering on the users, apps, and developers

as a free byproduct. Tables 4 and 5 show the parameters

learned from EM.

Table 5: Learned Parameters on Feature Nodes.

Id

 0 (2.5,1.5) (0.6,0.7)

1 (4.2,1) (0.01,0.18)

(a) parameters of fd/Id

Ia

0 (3.3,71) (1.2,6701)

1 (4.2,432) (0.01,90500)

(b) parameters of fa/Ia

Iu

0 (3.9,1) (0.01,2.13)

1 (4.0,1.5) (0.51,1.47)

(c) parameters of fu/Iu

In Table 5a and 5b, the conditional mean of

average rating of apps and developers agrees with the

intuition that higher quality apps and developers receive

higher ratings. Apps from class 1 (good quality) receive

more reviews than apps from class 0, and the variance

is much higher in class 1. However, we notice that the

number of apps feature for developer is similar for both

classes, because most of the developers have only 1 or

2 apps in this dataset. Also, the parameters of user

features are similar for both classes because most of the

users only posted one experience. Therefore average

rating of users does not provide enough information for

clustering users. The marginal probability of latent class

in Table 4 shows that the prior belief on users, apps,

and developers is heavily favored toward 1 (good

class).

VI. CONCLUSION

In this paper we propose an approach for spam

detection in Mobile game apps. To the best of our

knowledge, our work is the first attempt for spam

detection in this important domain. First, we propose a

new framework for spam detection. Second, we

propose a novel set of features particular to the mobile

user gaming experience based features that discriminate

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 1 Jan to Feb 2017

ISSN: 2249 – 2615 http://www.ijpttjournal.org Page 27

spam from nonspam. Third, we demonstrate the

effectiveness of our approach via experiments on a

datasets consist of all selected game apps crawled from

the Apple iOS App Store. We propose a latent class

model with interpretable structure and low complexity.

On the labeled data set, even though we use the simple

Linear Gaussian parameterization, it still achieves

significantly higher accuracy than a baseline Decision

Tree. On the unlabeled data set, it succeeds in

clustering the apps and user experiences into well

separated groups. Future work could explore extending

our Latent Class graphical model to adopt more features

with a different parameterization.

REFERENCES
[1] S.Ganov, C. Killmar, S. Khurshid, and D. Perry. Event listener

analysis and symbolic execution for testing gui applications. In

ICFEM, 2009.

[2] Google admob. http://www.google.com/ads/admob/.

[3] iad app network.

http://developer.apple.com/support/appstore/iad-app-network/.

[4] Microsoft advertising. http://advertising.microsoft.com/en-

us/splitter.

[5] S.Alrwais, A. Gerber, C. Dunn, O. Spatscheck,M. Gupta, and E.

Osterweil. Dissecting ghost clicks: Ad fraud via misdirected

human clicks. In ACSAC, 2012.

[6] T.Blizard and N. Livic. Click-fraud monetizing malware: A

survey and case study. In MALWARE,2012.

[7] P Chia, Y. Yamamoto, and N. Asokan. Is this app safe? a large

scale study on application permissions and risk signals. In

WWW, 2012.

[8] [8] V. Dave, S. Guha, and Y. Zhang. Measuring and

fingerprinting click-spam in ad networks. In ACM SIGCOMM,

2012.

[9] C.Cadar D. Dunbar and D. Engler. Klee: Unassisted and

automatic generation of high-coverage tests for complex

systems programs. In USENIX OSDI, 2008.

[10] P.Gilbert, B. Chun, L. Cox, and J. Jung. Vision:automated

security validation of mobile apps at app markets. In MCS,

2011.

[11] H.Haddadi. Fighting online click-fraud using bluff ads. ACM

Computer Communication Review, 40(2):21–25, 2010.14

[12] C.Hu and I. Neamtiu. Automating gui testing for android

applications. In AST, 2011.

[13] A.MacHiry, R. Tahiliani, and M. Naik. Dynodroid: An input

generation system for android apps. In FSE, 2013.

[14] A.Mesbah and A. van Deursen. Invariant-based automatic

testing of ajax user interfaces. In ICSE, 2009.

[15] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling

ajax-based web applications through dynamic analysis of user

interface state changes. ACM Transactions on the Web, 6(1):1–

30, 2012.

[16] A.Metwally, D. Agrawal, and A. El Abbadi.

Detectives:Detecting coalition hit inflation attacks in advertising

networks streams. In WWW, 2007.

[17] A.Metwally, F. Emekci, D. Agrawal, and A. El Abbadi.Sleuth:

Single-publisher attack detection using correlation hunting. In

PVLDB, 2008.

[18] B Miller, P. Pearce, C. Grier, C. Kreibich, and V. Paxson.

What’s clicking what? techniques and innovations of today’s

clickbots. In DIMVA, 2011.

[19] L.Ravindranath, J. Padhye, S. Agarwal, R. Mahajan,I.

Obermiller, and S. Shayandeh. Appinsight: mobile app

performance monitoring in the wild. In USENIX OSDI, 2012.

[20] W.Yang, M. Prasad, and T. Xie. A grey-box approach for

automated gui-model generation of mobile applications. In

FASE, 2013.

[21] M.Najork. Web spam detection. In L. Liu and M. T.• Ozsu,

editors, Encyclopedia of Database Systems, pages 3520{3523.

Springer US, 2009.

[22] Nick Bilton. Disruptions: So Many Apologies, So Much Data

Mining.

[23] http://bits.blogs.nytimes.com/2012/02/12/disruptions-so-many-

apologies-so-much-data-mining, 2012.

[24] Peter Gilbert, Byung-Gon Chun, Landon P Cox, and Jaeyeon

Jung. Vision: automated security validation

[25] of mobile apps at app markets. In Proceedings of the second

international workshop on Mobile cloud

[26] computing and services - MCS '11, page 21, New York, New

York, USA, 2011. ACM Press.

[27] Google admob: What’s the difference between estimated and

finalized earnings? http://support.

google.com/adsense/answer/168408/.

[28] Microsoft advertising: Build your business. http:

//advertising.microsoft.com/en-us/splitter.

[29] iad app network.

http://developer.apple.com/support/appstore/iad-app-network/.

[30] Admob publisher guidelines and policies.

http://support.google.com/admob/answer/1307237?hl=en&ref

topic=1307235.

[31] Microsoft pubcenter publisher terms and

conditions.http://pubcenter.microsoft.com/StaticHTML/TC/TC

en.html.

[32] L. Breiman. Bagging predictors. Machine

Learning,24(2):123{140, 1996.

[33] Y. Freund and R. E. Schapire. A decision-theoretic

generalization of on-line learning and an application to

boosting. In European Conference on Computational Learning

Theory, pages 23{37, 1995.

[34] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers Inc., San Francisco,CA, USA, 1993.

http://bits.blogs.nytimes.com/2012/02/12/disruptions-so-many-apologies-so-much-data-mining
http://bits.blogs.nytimes.com/2012/02/12/disruptions-so-many-apologies-so-much-data-mining
http://developer.apple.com/
http://pubcenter.microsoft.com/

