
International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 19

Transactional Memory Scheduling Using

Machine Learning Techniques
Basem Assiri, Costas Busch, Mansour Al Ghanim

Assistant Professor, Department of Computer Science, Jazan University

Professor, Division of Computer Science and Engineering, Louisiana State University

Lecturer, Department of Computer Science, Jazan University
Jazan University, Jazan, 45142, Saudi Arabia

Louisiana State University, Baton Rouge, LA 70803, USA

Abstract — Current shared memory multi-core

systems require powerful software and hardware

techniques to support the performance parallel

computation and consistency simultaneously. The use

of transactional memory results in significant

improvement of performance by avoiding thread

synchronization and locks overhead. Also,

transactions scheduling apparently influences the
performance of transactional memory. In this paper,

we study the fairness of transactions’ scheduling

using Lazy Snapshot Algorithm. The fairness of

transactions’ scheduling aims to balance between

transactions types which are read-only and update

transactions. In the article, we support the fairness of

the scheduling procedure by a machine learning

technique, which improves the fairness decisions

according to transactions history. The experiments in

this paper show that the throughput of the Lazy

Snapshot Algorithm is improved with a machine
learning support. Indeed, our experiments show that

the learning significantly affects the performance if

the durations of update transactions are much longer

than read-only ones or when the cost of abort is very

high. We also study several machine learning

techniques to investigate the fairness decisions

accuracy. In fact, K-Nearest Neighbor machine

learning technique shows more accuracy and more

suitability, for our problem, than Support Vector

Machine Model, Decision Tree Model and Hidden

Markov Model.

Keywords — Lazy Snapshot Algorithm,

Transactional Memory, Fairness Values, Support

Vector Machine, K-Nearest Neighbor, Decision Tree

Model, Hidden Markov Model

I. INTRODUCTION

The development in computer science results in a

huge increase in data that requires high-performance

processing and computation. One of the advanced

techniques to enhance and improve quantity and

quality of computation is parallel computing state

after each action is valid and predictable [11]. We
can achieve memory consistency if there are some

rules to make the results of the operations’ outputs

predictable. For example, if x = 1, and there are two

operations running simultaneously where one of them

writes x = 2 and the other reads the value of x.

Actually, the read operation may read the original

value of x (x = 1) or the newer value (x = 2). Thus,

we must have rules that decide which operation

commits first, since the correctness of the execution

relays on the order of operations.

In addition, an important way to deal with the
difficulty of writing concurrent applications is to use

transactional memory. Transactional memory

enhances systems’ performance because it allows

avoiding locks cost and problems [14]. Transaction is

a sequence of instructions that access local and

shared memory. Those instructions are either read the

content of the memory or write content to the

memory. A transaction is called read-only transaction

if it has only read instructions, and is called update

transaction if it has at least one write operation. At

the end of execution transaction commits or aborts.
Commit means to save all the changes and effects

which are made by current transaction. Abort means

to ignore all actions and changes that are made by the

transaction [20][9].

Actually, different memory techniques are

proposed to solve many problems concurrently and to

control accessing memory. Thus, asynchronous and

synchronous memory algorithms are used to support

the multiprocessing techniques, but we need to

guarantee that there are no problems as a result of

parallelism. Indeed, transactional memory uses the

concept of transactions to make look-free
synchronization more efficient comparing to mutual

exclusion-based techniques (lock-based). Lock-based

techniques enable only one thread to enter a critical

section which is the part of program that may cause

conflicts in parallel execution [9]. However,

transactional memory enables multiple threads to

execute transactions concurrently and abort

transactions that have conflicts. Building on hardware

transactional memory, a software

transactionalmemory is produced to work as

efficiently as hardware one with more flexibility in
transactional programming [20].

In this paper, we suggest increasing the throughput

of a classic algorithm which is the Lazy Snapshot

Algorithm (LSA), by maintaining the scheduling of

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 20

the transactions. The fairness of transactions’

scheduling is to balance between read-only

transactions and update transactions. The read-only

transactions do not hurt the system’s consistency

because they do not change the memory status. In

addition, the duration of read-only and update
transactions and the transactions’ dependencies vary

from one system to another which implies that

different scheduling is required for different systems.

For example, if the system uses an array to store data,

then every piece of data would be stored in a specific

row in the array (using index). In this case the

transaction executes read operation which reads the

value that is stored in that row, while the update

transaction writes a new value to that row. On the

other hand, for any system uses red black tree data

structure to store data. The transaction has to traverse

the tree to find the required element and read it. For
an update transaction, the write operation also has to

traverse the tree to the leaf, insert the new node and it

may need to recolor and reshape the tree. Thus, the

duration of transactions varies from system to system

based on the structure of the systems and the memory.

So, fairness of scheduling is to decide how many

read-only transactions to be committed per update

ones and this ratio is called Fairness Value (FV). The

FV is selected according to machine learning

technique through keeping the track of transactions’

history.
By recording a prefix of transactions’ execution,

we find out the order and number of read-only and

update transactions and pass them to the learning

model. We use supervised and unsupervised machine

learning models which will be explained in detail in

sections III and IV. Three supervised machine

learning techniques such as Support Vector Machine

(SVM), Decision Tree Model (DTM) and K-Nearest

Neighbor (KNN) are used for classification.

According to the prefix information, SVM, DTM and

KNN map the given information to the suitable FV.

Furthermore, we compare the results of the
supervised machine learning techniques with the

Hidden Markov Model (HMM) which is an

unsupervised machine learning technique. In fact, our

study shows the superiority of KNN over the other

models [23] [24].

The rest of this paper is organized as follows: In

Section II, we discuss some related works. The

design of the supervised machine learning models is

presented in Section III. In Section IV, we present the

design of the unsupervised machine learning model.

Section V discusses our algorithm. The experiments
and some results are presented in Section VI, while

the Section VII concludes the paper.

II. RELATED WORKS

In this section, we first show some related works

that are connected to transactional memory. Then we

illustrate some works related to machine learning

models. We end the section with some works that

combine both of them.

Software Transaction Memory (STM) [20] is

successful to support multi-processor systems. Most

STM tries to avoid conflicts and guarantee

progressiveness in different ways. Devietti et al. [5]
show how to acquire determinism and consistency in

the execution. Transactions can be classified

according to whether the objects’ statuses are private

or shared, and whether the operations are reads or

writes. They offer different techniques to handle

determinism. In some situations, thread must get the

token to execute a transaction and in other situations

thread can execute transaction directly. The token is

used to guarantee sequential execution for conflicted

transactions. However, this algorithm has two

problems which are dead-lock problem (when two

threads block each other) and starvation (when thread
may wait forever to be executed). In our algorithm,

we schedule transaction according to the type of their

operations.

The Multi-versions Permissive is a kind of

algorithms that keeps many versions of the same

object to allow more concurrency [16]. In case of

conflict, this algorithm could prevent aborting by

re-executing some of the conflicted transactions

using the old versions. A well-known example of

multi-version algorithm is LSA [18]. With LSA, we

check the states of the consistency of the object
version at the access moment. Therefore, we can

build consistent snapshots during the execution of

transaction to assure that transaction reads consistent

versions and guarantees correctness of execution. The

correctness of transaction’s execution is verified if

the snapshots of all objects versions it accesses are

consistent, which will be explained in detail in

section 4. However, we claim that the type, length

and order of transactions affect performance

[9][13][4][21]. Thus, we suggest scheduling

transactions in a way that suits the transactions’

content and the data structure they work on.
Moreover, one of the machine learning techniques

used in our paper is SVM. SVM is a supervised

machine learning technique in which we design a

dataset that includes some training examples. Then,

SVM classifies the data according to the given

examples. The accuracy of classification of SVM will

be computed according to the margins and distances

among classes [12][3].

Another supervised machine learning technique is

K-Nearest Neighbor, which classifies objects based

on the nearest training examples [2][19] [24]. In other
words, it clusters similar data in classes. Both of them

can be used in our algorithm to decide the proper FV.

DTM is proposed to reduce the complexity of

sorting and search problems. It traverses the tree from

the root to the leaves and in every level it takes a

decision on which path to follow. The decision is

taken based on a comparison of two numbers within

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 21

constant time. A decision tree allows reducing the

complexity of a set of elements of size n to log n [1].

Decision tree learning uses a decision tree to map

some inputs which are features or observations about

an object to specific outputs. In classification, we

traverse a tree and pass some levels (nodes). In each
intermediate node, we run a test on the object

features and based on the result we decide which

branch to follow until we arrive to the leaf which is

the suitable class [17].

Another idea presented by Wang suggests using

different algorithms according to the inputs’ types

[22]. Wang uses transactional memory with a

machine learning model and with an expert system.

However, the experiment focuses on some hardware

features such as transactional memory type and cache

size. On the other hand, our algorithm uses a learning

model to find the suitable FV to guide the scheduling
process and improve the performance.

Another work applies Markov Chain to improve

STM performance [6]. It uses the Markov Chain for

scheduling to control the contention of transactions

and decide on blocking temporarily when it is needed.

In fact, they focus on contention and the number of

transactions running in parallel regardless of the type

of these transactions. However, in our paper we use

the HMM which is an unsupervised learning model

[10][6] [23] to decide how to schedule the

transactions based on their types.

III. THE SUPERVISED MACHINE LEARNING

TECHNIQUES AND DATASET

In supervised learning, we generate a function that

maps inputs to suitable outputs which are called

labels or classes. Experts often provide some training

examples that supply systems with labels or classes.

For example, in classification problems, the learner

approximates a function that maps a vector into

classes by looking at training examples. Thus, to use

a supervised model we have to generate a dataset that

includes some training examples. The training

examples show how to map the features to the
suitable FV. In our dataset, there are three features

which are the number of reads-only, the number of

updates and the order of the transactions which we

call the sequence length.

Our study focuses on the throughput (commit per

time) of transactional memory. Thus we maintain

transactions’ scheduling based on recognizing the

deference between the behaviors of read-only

transactions and update ones (which is explained in

the introduction). Hence we consider the number of

read-only and update transactions as features. Also

the dependencies between them are very important so

we consider the order the transactions using the

sequence length feature. In fact, those are the main

features that should be considered for throughput of

transactional memory.
Actually, we track the prefix of transactions’

history (which is a part of transactions’ history that

precedes the learning process) and pass it to the

learning model. We count how many read-only

transactions and how many updates are in the prefix.

Also, we convert the order of reads and updates into

one number and we call it the sequence length. Table

I shows an example of how to calculate sequence

length for only 10 transactions with different orders.

In the first scenario, there are 5 reads followed by 5

updates. The sequence consists of two numbers

which are 5 and 5, so the sequence length equals to 2.
In the second scenario, the sequence consists of 1

update, 1 read, 1 update, 1 read and so on. It consists

of 10 numbers, so the sequence length is 10.

Our dataset consists of four columns which are the

three features followed by the suitable FV. To

generate the dataset we first need to know the size of

the prefix which is a piece of history we track to

extract the pattern from. Then we need to find all

possible combinations of the three features. For

example, if the prefix size is 20, the first combination

is 1 read-only, 19 updates and the sequence length is
2, which means the read-only transaction is the first

or the last one in the prefix. The next combination

will be 1 read-only and 19 updates and the sequence

length is 3, which means the read-only transaction is

somewhere in the middle of the prefix and so on.

Then we pass each permutation as an input set to the

LSA and we run it with all FVs we want to test.

During the runs we record the throughput of all FVs

on our algorithm (LSA that is explained in Section V),

and the FV with the maximum throughput will be the

suitable class. This way we generate all training

examples in the dataset.
In Algorithm 1, we show how to design our

training examples. The following procedures explain

how we find the suitable FV (class) for each training

example:

 We design the training examples in the dataset.

We design the dataset array (dataset[][]) which

has examples where each example consists of

three features and suitable FV (class). The

features are the number of read-only, the

number of updates, and the sequence length. As

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 22

Table I. Two Different Scenarios of 10 Transactions and How to Calculate the Sequence Length (r Means a Read-only Transaction and u

Means an Update Transaction)

Scenario

1

The

Sequence

The

Sequence

Length

Scenario

2

 The

Sequence

The

Sequence

Length

r1
r2

r3

r4

r5

u1

u2

u3

u4

u5

5, 5 2 u1
r1

u2

r2

u3

r3

u4

r4

u5

r5

 1, 1, 1, 1, 1,
1, 1, 1, 1, 1

10

shown in the algorithm, for example if the prefix

size = 20, the first combination is 1 read-only, 19

updates and the sequence length is 2. So, we

make dataset [i][0] = i + 1 representing the
number of read-only, dataset [i][1] = y where y

= size−− representing the number of updates

and dataset[i][2] = k where k = 2 representing

the sequence length.

 After we design the training example we create a

prefix of history (permutations[]) which is  a

group of transactions that reflect the same

numbers in the training example.  

 We run the Transactional Memory algorithm

(LSA) to execute the transactions in the prefix.

In each run of LSA we select different FV to

schedule transactions’ execution and we record

the throughput of each FV in output[][].

 After we run all FVs (that are considered in our

experiment), we record all throughputs, we  find

the maximum throughput and its corresponding

FV, and store that in temp[][].

 Then, we change the order of the transactions in

the prefix by finding next permutation which

preserves the same sequence length; we test it

with LSA using all FVs and we store the

maximum throughput in temp[][].

 Next we find the maximum throughput of the all

permutations that represent this training example

(which is the maximum throughput in temp[][],

also we get the corresponding FV),  and we

make that FV as the suitable class of this training

example (dataset[i][4] = F V).

 Now we design the next training example and

keep doing the same process.

For simplicity and to avoid learning process

overhead, in our experiment we reduce the size of the

prefix to 10 transactions. In ourexperiment, we test

all FVs from 1 to 9 and according to the results we

select only three FVs which are 1, 4 and 8. The FV=

1 means 1 read-only transaction per 9 updates. The

FV= 4 means 4 read-only transactions per 6 updates,

while FV= 8 means 8 read-only transactions per 2

updates. More details about FV selecting will be
illustrated later in section V.

Table II shows a sample of our dataset which

consists of rows and columns. The first row gives a

summary of dataset. It states that the number of

examples is 54, the number of columns is 4, and
shows the three classes. Then, each example is placed

individually in a row. For example, in row number 2

in the table, the example 1, 9, 2, 1 means that if there

are 1 read-only transaction, 9 update transactions and

the sequence length is 2, then the suitable FV is 1.

The FV is assigned to the training example based on

Algorithm 1.

A. Support Vector Machine

The basic SVM takes a set of input data and

predicts the suitable output and each given input will
be classified into a suitable class [12]. Fig. 1, shows

the SVM classification accuracy which is calculated

according to the following formula:

w∗ x + b = 0, where

x denotes the features
w the normal vector to the hyper plane
b denotes misclassification
Higher accuracy of the classification using SVM

requires bigger margins among classes.

At the beginning we need to test the classification

accuracy of SVM. In fact first two features (which

are the number of read-only and the number of

update transactions) are more important, so we
decide to design and test a dataset with only those

two features. Also we select only 3 FVs. We use

Scikit-learn to test the machine learning models in

this paper

(Scikit-learn is a package that is designed to

introduce many machine learning algorithms and

codes in Python in a simple and understandable way)

[15]. The result of running the SVM classifier using

the dataset of two features is shown in Fig. 2 (a). In

Fig. 2 (a), the x axis represents the number of read-

only and y axis represents the number of updates.
The classes represent the three FVs. Each point in the

figure represents a training example. The accuracy of

this classification was about 73% which is not high.

Some dots are classified in the wrong class. It is clear

that there is misclassification which decreases the

classification accuracy. Therefore, the SVM fails at

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 23

some point because SVM accuracy increases when

the margin between classes is bigger. However, in

our model we need to classify some dots where the

number of read-only transactions is close to the

number of updates and those usually affect the

accuracy of SVM [12].

Fig.1:SVM Classifier Uses a Hyperplane to Classify a Set of

Elements into Two classes. The Accuracy of Classification

Depends on Margin Between Classes.

Table II. Some Training Example from our Dataset (Where the FV

is Assigned to the Training Examples Based on Algorithm 1.)

54 4 1 4 8

 1 9 2 1

 2 8 2 1

 2 8 5 1

 :

 :

 5 5 2 8

 5 5 5 4

 5 5 10 8

 :
 :

 9 1 2 8

 :

B. Decision Tree Model

DTM is supervised learning method that maps

input to output by following some decision rules. The

model gets the input and finds out the features, then

based on the features the model traverses the tree

starting from the tree’s root node. In each node, and

based on some decision rules, the model decides

which path to take until arriving to the leaf. In

classification, the tree leafs are the classes, so the
paths of the tree eventually map the input to a

suitable class [15]. For example, any boolean rule

such as

if-then statement represents a tree with many

branches.

In fact we decide to use DTM because its cost is

very low (the cost of trees is logarithmic) which is

important to avoid the learning process overhead.

Also the cost is important to cope with the high speed

of transactional memory. However the accuracy of

DTM might be affected since even small variations in

data result in huge variations in the shape of tree

which affect the classification process [15].

Fig. 3 shows an example of decision tree where the

rules in the nodes is set based on the examples in the
dataset. In each node there is a test rule which has yes

or no result. For example we test a history that has

some read-only and update transactions, by compare

it to some integers such a and b. We traverse the

tree’s tests that are designed according to the training

examples until it arrives to one of the classes. Clearly

the accuracy of the rules influences the accuracy of

the classification.

Fig.2: SVM, DTM and KNN with the Dataset of Two Features.

We Use the Standard Programs that are Provided by Scikit-learn

Package to Measure the Accuracy of the Three Models.

The result of running the DTM classifier using the

dataset of two features is shown in Fig. 2 (b). In Fig.

2 (b), the x axis represents the number of read-only

and y axis represents the number of updates. The

classes represent the three FVs. Each point in the
figure represents a training example. The accuracy of

this classification is about 85% which is acceptable.

Obviously, the dots are classified in suitable classes.

However, some classes are broken into many parts

since it does not consider the status of the neighbors.

C. K-Nearest Neighbor

The k-Nearest Neighbor algorithm (KNN) is a

classifier that classifies objects based on closest

training examples in the feature space [2][19].

Algorithm 1: Dataset Training Examples

CalculateSequenceLength(); // How many times we switch from read-only to update or from update to read

 // only

int size; // The number of transaction we track
dataset[][4]; // Dataset array

permutations[]; // All permutations for the same number of read-only and update transactions

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 24

output[rangofFVs][2]; // Record the throughput of LSA using the permutations array as an input

temp[1][2]; // To stroe the temporary FV

max[1][2] = {0, 0}; // To store the best FV

y = size; // The number of updates

// The loop for number of read-only and update transactions

for from i = 0 to size – 1 do

y--;
// The loop for sequence length

for from k = 2 to size do

dataset[i][0] = i + 1; // The number of read-only

dataset[i][1] = y; // The number of updates

dataset[i][2] = k; // The sequence length

// Now prepare array to find permutations

n = i + 1;

for from j = 0 to size – 1 do

if (n > 0) then

permutations[j] = 'r'; // r means read-only

n--;

else permutations[j] = 'u'; // u means update
 // Now we test all permutations with all fairness values to decide the suitable FV

s = 0; // Counter for do while statement

while (s < factorial(size)) do

x = CalculateSequenceLength(permutations[]);

if (k == x) then

// FVs range is how many fairness values we test

for from f = 1 to FVrangedo

FV = F;

output[F][0] = LSA(permutations[], size, FV); // Record the throughput of out algorithm

// using the permutations array as an input and

 // the current FV
output[F][1] = FV;

 temp[0][0] = FindMaximumThroughput(output[][]);

 temp[0][1] = FindMaximumThroughput’sFV(output[][]);

 // Find the FV of the maximum throughput

if (temp[0][0] > max[0][0]) then

max[0][1] = temp[0][1]; // Keep the best FV

permutations[] = nextpermutations(permutations[], size); // Find next permutations

s++;

dataset[i][4] = max[0][1]; // The suitable FV

return;

Fig. 2 (c) shows the implementation of KNN on the
dataset of two features [15]. Fig. 2 (c) shows that all

dots are classified under the correct class. The

accuracy of KNN is about 90% which is higher than

SVM and higher than DTM. Indeed in Fig. 2 the dots

are classified similarly using DTM in subfigure (b)

and KNN in subfigure (c), while the accuracy of

DTM is 85% and the accuracy of KNN is 90%. That

happens because there are different ways to measure

the accuracy of classification. Actually the accuracy

of every model is measured in specific way [15].

Apparently, the KNN model is very flexible; it is

able to classify the critical dots. The superiority of
KNN over the other models will be clearly appearing

when we have more critical training examples. Also

when we execute our algorithm we are going to

record the history of transactions and pass a piece of

that history to the learning model to predict the

suitable FV. So, it is possible for some systems to

usually pass data which is considered as critical and
difficult to classify. In short KNN model is more

suitable for our system than both SVM and DTM.

Thus, we decide to use KNN to support the

transactions’ scheduling process.

Fig.3: Decision Tree Model

Moreover, we run the KNN classifier using the

dataset based on three features that appears in Table

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 25

II. At the beginning and we tested the classification

accuracy of SVM, DTM and KNN using a dataset

with only two features which are the number of read-

only and update transactions (for clarity and for the

importance of those two features). Actually for more

accuracy we need to consider on more feature which
is the order of the transactions. For example, the

execution a bunch of read only transactions followed

by a bunch of updates would be completely different

from executing the same number of transactions

while they are interleaved. Fig. 4 shows the result of

the KNN classification on the three features where

each feature is represented by an axis on the graph.

The KNN is able to classify the data example into

three classes which are red, blue and yellow

representing the FVs 1, 4 and 8 respectively.

For simplicity’s sake, we do not focus on the

overfitting issue in the comparison among the three
classifiers. However in our experiments (in section

VI) we examine the ability of KNN model to

generalize by using data that is collected online and

not necessarily used in the training.

IV. AN UNSUPERVISED MACHINE LEARNING

MODEL

Unsupervised learning is to model a set of inputs

while here labels are unknown during training [8]. In

fact, the model itself recognizes labels while it is

running. In our problem we use unsupervised

learning with HMM since it is very useful in
sequence analysis such as in biology and in this

research we have to analyze the history which is a

sequence of transactions. Since HMM is one of the

unsupervised machine learning models, there are

unobserved hidden states X which must be discovered

based on the observed data Y. HMM consists of some

states and all states have probabilities that help to

predict the hidden state [10]. For example, it is

difficult to find a scheduling model that suits all

systems by increasing throughput and reducing

conflicts. Therefore, the suitable transactions’

scheduling for each system is the hidden state.
However, we can find the hidden state based on some

observations such as system performance, the

transactions’ history and transactions’ duration.

Furthermore, by recording observations and states

frequently, the first result helps to predict the second

one and so on. Thus, HMM calculations rely on the

following:

 The initial probabilities for hidden states.

 Transition probabilities that tell how to transit

among states over time.

 Observation probabilities which are used as
indications to find out the hidden states.

Fig.4: KNN with our Dataset

In our model the hidden states are the FVs. As we

mentioned above the FVs we use are 8, 4 and 1. Fig.

5 shows the initial probabilities which we need to

start. The probabilities of FVs 8 and 1 are .33 and of

FV 4 is .34, so the system more likely starts with

state FV= 4. Even if we start with inaccurate

probabilities, the model can improve itself over the
time by maintaining probabilities based on the

observations. Also, as the probability of X changes

over time, we propose transition probabilities and we

favor remaining in the current state. Therefore, the

state of X at first unit of time T1 is more likely to

remain the same at the second unit of time T2. While

the probability of switching from X = 8 or 1 to 4

is .35 and it is less likely to transit between 8 and 1

directly since the probability is just .15. The

probability of switching from X = 4 to 1 or 8 is .25.

The two states at the bottom of Fig. 5 shows the
probabilities of our observed data which is Y1 = read-

only and Y2 = update. Thus, the more reads favors the

FV= 8, the more updates favors the FV= 1 and the

equal number of both suits the FV= 4. In fact the

probabilities in Fig. 5 is selected according to our

investigations during the design of the dataset

(Algorithm 1) that is used for supervised learning

models. However, we try to select fair probabilities to

reduce the influence of our decisions on the model.

Fig.5: HMM and the Probabilities (Start is the Initial State, X's are

the States and Y's are the Observations)

Fig. 6 shows how to build the sequence of states

over time. It means to find the state of X4, we need to

calculate the probability of initial state X1, the

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 26

transition probability from X1 to X2, the probabilities

of Y1 using X2, the transition probability from X2 to X3,

finding Y2 using X3, and the transition probability

from X3 to X4. Indeed, we get the probability from the

model (in Fig. 5) and we multiply them to calculate

X4.

Fig.6: Sequence of States in HMM

V. THE DESIGN OF OUR ALGORITHM

A. Background about LSA

Using LSA [18],the memory consists of a set of

objects where each object in the memory may have

more than one version (a version shows the last
written value to the object and the other versions

show the old values). This algorithm is used to

execute transactions in parallel where some read and

write operations may interleave and affect the

correctness of each other. Indeed, the correctness of a

concurrent execution can be verified by matching it

with a sequential valid execution. Many algorithms

run transactions and validate a transaction’s

execution at the end to commit or abort, but LSA

verifies the consistency at each object access point of

time. Thus, an LSA is able to verify the consistency

of execution during each object access by building
consistent snapshots. This, can accumulatively verify

the validity and the correctness of the execution.

When a transaction starts execution, the

transaction sets the lower bound of its snapshots. The

read operations try to read the last written version of

the object. However, if the last written version was

created after the transaction starts, it checks if this

version violates the consistency, and if it does, it

ignores that version and reads an older one which has

a validity range that suits the transaction. This way

LSA selects the version that produces the consistent

snapshot. The write operations are executed locally

and they create new versions at transaction’s commit

time.

Consequently, read-only transactions commit

directly and they do not abort. The update transaction

must validate the versions to commit or abort, and if
it commits it has to get a unique commit time [18].

B. Our Scheduling Algorithm

At the beginning of the execution, our scheduling

algorithm (Algorithm 2) executes transactions using

LSA. We suppose that we know whether the

transaction is read-only or update at the beginning of

the execution. We record the transactions’ numbers,

order and types in recordingArray[]. The size of the

recordingArray[] is related to how much data we

want to investigate. It is preferred to keep it as small

as possible to avoid the learning overhead and its
negative impact on the performance. Then, we pass

the recorded data to the learning model which is

either KNN or HMM and we conduct online and real-

time learning (HMM will treat transactions in

recordingArray[] as a sequence of observations). The

learning model processes the data and returns the best

FV that suits the execution. After that, the model uses

the proposed FV to schedule transactions on LSA

(since different sequence of transactions affecting the

execution and the performance of an algorithm.

Actually the algorithm verifies the correctness based
on the order of the transactions).

In fact, we need to have continuous learning

however that influences the performance of the

system. Therefore, we add flexibility to the

scheduling algorithm using frequent which is a

number used to decide how frequently we call the

learning model. The stability and consistency of the

numbers, types and arrival times of transactions

differ from one system to another. So, if the system is

stable then we have large value for frequent, which

means we call the learning model infrequently. In our

scheduling algorithm, each transaction arrives
increase a global counter transactionCounter. The

transaction first checks the frequent to know if it isthe

time to call the learning model or not. Then, if it is

the time to call the learning model, then it records

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 27

Algorithm2: The Scheduling Algorithm

transactionCounter-1;

sizex; // To set the size of recordingArray[]
recordingArray[size]; // It records transactions’ order and type

recordingfalse;

frequentnumber; // It tells how frequently we call learning model.

r 0; // Counts reads

u 0; // Counts updates
fvReadonly; // The value assigned by learning model

fvUpdate; // The value assigned by learning model

i 0;

readonly 0; // Counts the pending reads-only

update 0; // Counts the pending updates

 Upon receipt of a transaction do;

transactionCounter.getAndInc();

if ((transactionCountermod frequent) = 0) then

recording true;
if (recording = true) then

i++;

if (i<size) then

if (TransactionType = read-only) then

recordingArray[i] 0; // 0 means read-only

else

recordingArray[i] 1; // 1 means update

else

// The Learning Model was explained in Section III and IV

fvReadonlyLearningModel(recordingArray[i]);

fvUpdate (10 – fvReadonly);

i 0;

recording false;

LSA(transaction); // Start execution using LSA
else

if (TransactionType = read-only) then

readonly.getAndInc();

// When it exceeds the FV and there is no update transactions

while ((r >fvReadonly) ^ (update = 0))do

wait();

r++;

LSA(transaction); // Start execution using LSA

readonly.getAndDec();

else

update.getAndInc();
 // when it exceeds the FV and there is no read-only transactions

while ((u >fvUpdate) ^ (readonly =)) do

wait();

u++;

 LSA(transaction); // Start execution using LSA

Update.getAndDec();

If ((r >fvReadonly) ^ (u >fvUpdate)) then

r 0;

u 0;
return;

transactions. In the recording process, each

transaction is represented in the recordingArray[] as

a 0 if it is read-only and as a 1 if it is an update

transaction. Then it executes using LSA. After the

recording finishes, we pass the recordingArray[] to

the learning model (KNN or HMM) which returns

the FV. The learning model returns the number of

read-only fvReadonly and from that we calculate the

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 28

number of updates fvUpdate. From this point, we

schedule transactions based on the FV we have.

Indeed, we ignore this FV just in case there is only

one type of transaction. In the algorithm, we use

readonly and update which are counters telling how

many pending transactions there are of each type.

VI. EXPERIMENTAL RESULTS AND

DISCUSSION

In our experiment, we use standard benchmarks to

verify the benefit of learning on transactional

memory scheduling. In fact, we use Bank, Linked-list

and Red-black Tree benchmarks from TinySTM-

1.0.5 [7]. We run the experiments on a machine with

dual Intel(R) Xeon(R) CPU E5- 2630 (6 cores total)

clocked at 2.30 GHz. Each run of the benchmark

takes about 10000 milliseconds using 10 threads. In

the Bank benchmark, there are three kinds of

operations which are read balance, write amount and
transfer from one account to another. Read balance is

a read-only transaction, while write amount and

transfer are update transactions, we consider any

transaction that includes one write operation as an

update. Initially, there are only 20% reads-only and

80% updates. The benchmark executes millions of

transactions that access 1024 bank accounts in

parallel.

In the Linked-list and the Red-black Tree

benchmarks, there are three kinds of operation which

are add node, delete node and contain which searches
for specific value in the list or tree. Contain

operations are considered as read-only but add node

and delete node operations are update transactions. In

both, initially there are 80% reads-only and only 20%

updates. However, we test the three benchmarks with

three different scenarios which are 80% reads-only

and 20% updates, 50% reads-only and 50% updates,

and 20% reads-only and 80% updates.

First, we run each benchmark against all FVs to

obtain a general idea about FVs themselves and how

they affect the performance. The FVs we use are

ratios out of 10 such that the FV= 9 means 9 : 1,
where the first number represents the number of

reads-only while the other represents the number of

updates. We test FVs from 1 to 9 with all three

benchmarks and all scenarios. (Moreover, our

algorithm permits to change the scheduling FV in

response to any changes of arriving transactions

which is note covered in this experiments since that

we use the standard benchmarks that generate

transactions in specific pattern).

Fig. 7 (a) demonstrates the throughput of FVs

(from 1 to 9) with the Linked-list benchmark using

different percentages of reads and writes (we test

every percentage of the transactions against all FVs).

The figure shows that the performance improves as

we increase the number of read-only transactions and
that happens with the three scenarios. It is clear that

the scenario of 80% of reads only is the best, while

throughput drops as we increase the number of

updates. Also, within each scenario large FVs allow

more reads-only to be scheduled concurrently which

increase throughput as well. This happens because

the reads-only usually have less durations than

updates and do not abort as they do not affect the

consistency. This increases the throughput and

improves the performance.

The same thing happens with the Red-black Tree

benchmark. Fig. 7 (b) shows the Red-black Tree
throughput with all FVs. The figure shows dramatic

increment in the throughput for the three scenarios

when the FV allows more reads-only (using large

FVs) because the reads-only is much faster than

updates. In updates, a transaction has to traverse the

entire tree to the leaf and it may need to change the

colors of some nodes and the shape of the tree which

makes the update transaction much longer. Thus,

raising the number of reads-only through the

percentage of generated reads-only or through

scheduling improves the performance.
Fig. 7 (c) illustrates the Bank benchmark where all

FVs have almost the same performance with all

scenarios. This happens because of the data structure

type, and because of the differences between the

duration of read-only transactions and update ones is

very small (as explained in the introduction). Indeed,

the duration of read-only transactions here is a bit

longer than the duration of updates. Thus, the

scenario of 20% reads-only and 80% updates

achieves the top performance.

In our experiment the FV=9 shows good

performance with the Linked-list and the Red-black
Tree benchmarks but it cannot be guaranteed for

different algorithm and benchmarks. For example, in

Bank benchmark some other FVs are better than

FV=9. Indeed, our benchmark uses LSA, where any

read operation tries to find the suitable version of the

object (based on the transaction’s timestamp). By

keeping many versions, read operation is able to

execute correctly and read-only transactions usually

commits. Therefore, using FV=9 (to schedule 9

read-only transactions and 1 update) the 9 read-only

transactions usually commit which increases the
throughput.

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 29

Fig.7: (a) Linked-list Throughput with All FVs. (b) Red-black Tree Throughput with All FVs. (c) Bank Throughput with All FVs.

Furthermore, having all FVs as classes in the
learning model will affect the accuracy and increase

the learning overhead. Therefore, we need to reduce

the number of FVs in the learning model based on the

results shown in Fig. 7. We select only three FVs

which are 1, 4 and 8 to be the classes in our learning

process. Apparently, Fig. 7 shows that the

performance of FV= 1 is very close to FV= 2, the

FV= 4 is comparable to 3, 5 and 6, and the

performance of FV= 8 is akin to FVs 7 and 9.

In Fig. 8, we show the accuracy of learning models.

We run LSA with learning models which are HMM

and KNN such that the learning models check the
prefix of execution and decide the suitable FVs. Then

we enforce different FVs in LSA scheduling and we

compare their (FVs) throughputs (such as in Fig. 7)

with throughputs of LSA using HMM and LSA using

KNN. In fact such comparison allows to clearly see

the accuracy off the learning models. Actually we run

them on the three benchmarks (Linked-list, Red-

black Tree and bank) and we run each one with three

scenarios (80% reads-only and 20% updates, 50%

reads-only and 50% updates and 20% reads-only and

80% updates).
Fig.8(a)showsthethroughputofLSAontheLinked-

listbenchmarkwhereFV =9showsthe best of the

enforced FVs. LSA using HMM shows high accuracy

in some cases and fails with others. Clearly, HMM

returns an accurate FV when there is 80% reads-only
and 20% updates but it returns inaccurate FVs with

the other scenarios (50% reads-only and 50% updates

and 20% reads-only and 80% updates). On the other

hand, LSA using KNN returns accurate FVs with all

three scenarios.

Fig. 8 (b) shows the throughput of LSA on the

Red-black benchmark where F V = 9 also shows the

best performance (highest throughput) of the

enforced FVs. LSA using HMM performs well with

the scenario of 80% reads-only and 20% updates but

it does not succeed with the other two scenarios.

However, LSA using KNN performs well with all
three scenarios which indicates the success and

accuracy of KNN in the selection of FVs.

Fig. 8 (c) shows the throughput of LSA on the

Bank benchmark where all FVs perform almost the

same. Thus, the accuracy of HMM and KNN cannot

be judged as the selection of any FV does not show

any difference on the throughput. However, it is clear

that both HMM and KNN do not show negative

impact on the performance because they are designed

in a proper way that minimize their overhead.

Fig. 9 demonstrates a comparison of the
performance of LSA using transactions’ timestamps

scheduling, LSA with KNN and LSA with HMM.

Timestamps scheduling means to schedule

transactions based on their arrival times. Using the

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 30

Fig.8: (a) The Accuracy of LSA Using KNN and LSA Using HMM Compared to the Enforced FVs Using the Linked-list Benchmark. (b)

The Accuracy of LSA Using KNN and LSA Using HMM Compared to the Enforced FVs Using the Red-black Tree Benchmark. (c) The

Accuracy of LSA Using KNN and LSA Using HMM Compared to the Enforced FVs Using the Bank Benchmark. (We Measure the

Accuracy Based on the Throughput)

Linked-list benchmark, Fig. 9 (a) shows that high

percentage of read-only transactions usually results in
high throughput as we mentioned before. Fig. 9 (a)

proves the advantage of using machine learning for

transactions’ scheduling. For LSA using KNN, it

shows the highest throughput with all scenarios.

When we use HMM, it improves the performance of

LSA only when the percentage of reads-only is high.

On the other hand, the performance of LSA with

HMM is negatively affected as the percentage of

updates increases. The figure also illustrates the risk

of the learning process, as the learning accuracy

problems lead to unsuitable scheduling which causes

more aborts. This clearly happens with HMM when
there are 50% or 80% updates. Thus, KNN obviously

is more suitable to LSA scheduling.

The same thing happens with the Red-black Tree

benchmark in Fig. 9 (b), where KNN is more

efficient than HMM and timestamps scheduling.

HMM works well only with a large number of read-

only transactions and it fails when we reduce the

reads-only.

In Fig. 9 (c), with the Bank benchmark, the

duration of update transaction is less than read-only

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 31

Fig.9: (a) LSA, LSA with KNN and LSA with HMM Throughputs Comparison Using Linked-list Benchmark. (b) LSA, LSA with KNN and

LSA with HMM Throughputs Comparison Using Red-black Tree Benchmark. (c) LSA, LSA with KNN and LSA with HMM Throughputs

Comparison Using Bank Benchmark.

one. So, the throughput drops when there are more

read-only transactions. Furthermore, KNN and HMM

do not have significant influence on the performance

of Bank benchmark because the durations of
transactions in general are very short, and the

durations of updates with aborts is almost equal to the

durations of reads-only.

Thus, the learning techniques are more helpful if

transactions’ durations in average are long, and when

the costs of updates and aborts are very expensive.

Also, the KNN learning model helps to achieve high

throughput and better performance of LSA.

On the other hand, one might argue that FV=9

could always be used instead of going through the

overhead of the learning model computations. This
argument could be based on the premise, that FV=9

shows good throughput in all benchmarks. In fact,

this premise can be misleading especially with

systems where information has to be up to date most

of the times. In such systems, we should allow more

updates to commit instantaneously, so that read-only

transactions read up to date values. Another reason to

show that FV=9 is not always good is that some

systems have increasingly high number of reads and

writes competing on a limited storage (for example,

small number of memory objects or linked-list with

small number of nodes). This will result in higher

chances of dependencies and conflicts among

transactions, which results in more updates having to

be aborted.

Fig.10: The Number of Read Transactions to the Number of

Update Transactions.

Both scenarios are investigated in Fig. 10 and Fig.
11. In Fig. 10, FV=9 shows the highest total

throughput. Although the reads are dominating the

updates, this shows that huge amount of update

transactions are not able to commit, so most of these

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 32

reads read outdated values (not stale). This is shown

in Fig. 11 where FV=9 results in 81% of update

transactions being aborted. In other words, for each

committed update transaction there will be around

four aborted update transactions. Thus, with FV=9

only about 19% of updates are able to commit, which
is not optimal for sensitive systems that requires

frequent update.

However, if the algorithm aborts read-only

transactions then FV=9 could be the worse,

especially with a program of very high dependencies

among transactions. In short, FV=9 is a good choice

with the algorithms that do not abort read-only

transactions, while our model is very useful for other

cases. For example, when the chance of aborting

read-only and update transactions are equal.

Fig.11. Total Update Transactions vs Committed and Aborted

Update Transactions.

Table III shows the learning overhead for KNN

and HMM that are combined with LSA using

Linked-list, Red-black Tree and Bank benchmarks.

The table illustrates the percentages of the execution

time of the learning process out of the total execution
time of KNN+LSA and HMM+LSA using the three

benchmarks. The differences among the three

benchmarks depend on how frequent they call the

learning function. In our experiment the size of

recordingArray[] is 20 which means every time we

receive 20 transactions we call the learning function

and so on. Overall the learning process overhead is

reasonable comparing to the improvement on the

throughput.

Table III. The Percentages of the Execution Time of the Learning

Process (Learning Process Overhead) Out of the Total Execution

Time of KNN+LSA and HMM+LSA Using Linked-list, Red-black

Tree and Bank Benchmarks.

 KNN HMM

Linked-list 4.8% 6.38%

Red-black Tree 10.01% 10.94%

Bank 3.28% 3.51%

Average 6.03% 6.95%

VII. CONCLUSION

In conclusion, our scheduling algorithm uses the

idea of supervised and unsupervised learning models

to improve the performance of transactional memory

algorithms. This way of scheduling allows more

flexibility to find the suitable scheduling for different

problems (Linked-list, Red-black Tree and Bank).

Type and duration of transactions extremely impact

the performance of transactions execution. In the

future, we want to test some other learning
techniques with more features and using different

algorithms.

ACKNOWLEDGMENT

This work is supported by the National Science

Foundation grant 1320835.

REFERENCES

[1] Alfred V Aho, John E Hopcroft, and Jeffrey D Ullman. Data

structures and algorithms, 1983.

[2] Naomi S Altman. An introduction to kernel and

nearest-neighbor nonparametric regression. The American

Statistician, 46(3):175–185, 1992.

[3] SS Arya and S Lavanya. A comparative study of machine

learning approaches-svm and ls-svm using a web search

engine based application. International Journal on Computer

Science & Engineering, 4(5), 2012.

[4] HagitAttiya and Eshcar Hillel. Single-version stms can be

multi-version permissive. In Distributed Computing and

Networking, pages 83–94. Springer, 2011.

[5] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin.

Dmp: deterministic shared memory multiprocessing.

In ACM Sigplan Notices, volume 44, pages 85–96. ACM,

2009.

[6] Pierangelo Di Sanzo, Marco Sannicandro, Bruno Ciciani,

and Francesco Quaglia. On exploring markov chains for

transaction scheduling optimization in transactional memory.

7th Workshop on the Theory of Transactional Memory

(WTTM 2015).

[7] Pascal Felber, Christof Fetzer, and TorvaldRiegel. Dynamic

performance tuning of word-based software transactional

memory. In Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and practice of parallel

programming, pages 237–246. ACM, 2008.

[8] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and

James Franklin. The elements of statistical learning: data

mining, inference and prediction. The Mathematical

Intelligencer, 27(2):83–85, 2005.

[9] Maurice Herlihy and J Eliot B Moss. Transactional memory:

Architectural support for lock-free data structures, volume

21. ACM, 1993.

[10] Xuedong D Huang, Yasuo Ariki, and Mervyn A Jack.

Hidden Markov models for speech recognition, volume

2004. Edinburgh University Press Edinburgh, 1990.

[11] Stephen Cole Kleene. Introduction to metamathematics.

1952.

[12] Leonid AryehKontorovich, Corinna Cortes, and

MehryarMohri. Kernel methods for learning languages.

Theoretical Computer Science, 405(3):223–236, 2008.

[13] Priyanka Kumar and Sathya Peri. A timestamp based

multi-version stm protocol that satisfies opacity and

multi-version permissiveness. arXiv preprint

arXiv:1305.6624, 2013.

[14] Karl Ljungkvist, Martin Tillenius, Sverker Holmgren,

Martin Karlsson, and Elisabeth Larsson. Early results using

hardware transactional memory for high-performance

computing applications. In Proc. 3rd Swedish Workshop on

Multi-Core Computing, pages 93–97. Go ̈teborg , Sweden:

Chalmers University of Technology, 2010.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.

Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.

Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning

Research, 12:2825–2830, 2011.

[16] Dmitri Perelman, Rui Fan, and IditKeidar. On maintaining

multiple versions in stm. In Proceedings of the 29th

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 9 Issue 4 – July - Aug 2019

ISSN: 2249-2615 http://www.ijpttjournal.org Page 33

ACM SIGACT-SIGOPS symposium on Principles of

distributed computing, pages 16–25. ACM, 2010.

[17] J. Ross Quinlan. Induction of decision trees. Machine

learning, 1(1):81–106, 1986.

[18] TorvaldRiegel, Pascal Felber, and Christof Fetzer. A lazy

snapshot algorithm with eager validation. In Distributed

Computing, pages 284–298. Springer, 2006.

[19] EkoSetiawan and AdharulMuttaqin. Implementation of

k-nearest neightbors face recognition on low-power

processor. TELKOMNIKA (Telecommunication

Computing Electronics and Control), 13(3), 2015.

[20] NirShavit and Dan Touitou. Software transactional memory.

Distributed Computing, 10(2):99–116, 1997.

[21] Mukul K. Sinha. Nonsensitive data and approximate

transactions. IEEE Transactions on Software Engineering,

(3):314–322, 1983.

[22] Qingping Wang, Sameer Kulkarni, John Cavazos, and

Michael Spear. A transactional memory with automatic

performance tuning. ACM Transactions on Architecture and

Code Optimization (TACO), 8(4):54, 2012.

[23] Neelamegam, S., and E. Ramaraj. "Classification algorithm

in data mining: An overview." International Journal of P2P

Network Trends and Technology (IJPTT) 4.8 (2013): 369-

374.

[24] Gaur, Manas, ShrutiGoel, and Eshaan Jain. "Comparison

between Nearest Neighbours and Bayesian Network for

demand forecasting in supply chain management." 2015 2nd

International Conference on Computing for Sustainable

Global Development (INDIACom). IEEE, 2015.

