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Abstract — Current shared memory multi-core 

systems require powerful software and hardware 

techniques to support the performance parallel 

computation and consistency simultaneously. The use 

of transactional memory results in significant 

improvement of performance by avoiding thread 

synchronization and locks overhead. Also, 

transactions scheduling apparently influences the 
performance of transactional memory. In this paper, 

we study the fairness of transactions’ scheduling 

using Lazy Snapshot Algorithm. The fairness of 

transactions’ scheduling aims to balance between 

transactions types which are read-only and update 

transactions. In the article, we support the fairness of 

the scheduling procedure by a machine learning 

technique, which improves the fairness decisions 

according to transactions history. The experiments in 

this paper show that the throughput of the Lazy 

Snapshot Algorithm is improved with a machine 
learning support. Indeed, our experiments show that 

the learning significantly affects the performance if 

the durations of update transactions are much longer 

than read-only ones or when the cost of abort is very 

high. We also study several machine learning 

techniques to investigate the fairness decisions 

accuracy. In fact, K-Nearest Neighbor machine 

learning technique shows more accuracy and more 

suitability, for our problem, than Support Vector 

Machine Model, Decision Tree Model and Hidden 

Markov Model. 
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I. INTRODUCTION 

The development in computer science results in a 

huge increase in data that requires high-performance 

processing and computation. One of the advanced 

techniques to enhance and improve quantity and 

quality of computation is parallel computing state 

after each action is valid and predictable [11]. We 
can achieve memory consistency if there are some 

rules to make the results of the operations’ outputs 

predictable. For example, if x = 1, and there are two 

operations running simultaneously where one of them 

writes x = 2 and the other reads the value of x. 

Actually, the read operation may read the original 

value of x (x = 1) or the newer value (x = 2). Thus, 

we must have rules that decide which operation 

commits first, since the correctness of the execution 

relays on the order of operations.  

In addition, an important way to deal with the 
difficulty of writing concurrent applications is to use 

transactional memory. Transactional memory 

enhances systems’ performance because it allows 

avoiding locks cost and problems [14]. Transaction is 

a sequence of instructions that access local and 

shared memory. Those instructions are either read the 

content of the memory or write content to the 

memory. A transaction is called read-only transaction 

if it has only read instructions, and is called update 

transaction if it has at least one write operation. At 

the end of execution transaction commits or aborts. 
Commit means to save all the changes and effects 

which are made by current transaction. Abort means 

to ignore all actions and changes that are made by the 

transaction [20][9]. 

Actually, different memory techniques are 

proposed to solve many problems concurrently and to 

control accessing memory. Thus, asynchronous and 

synchronous memory algorithms are used to support 

the multiprocessing techniques, but we need to 

guarantee that there are no problems as a result of 

parallelism. Indeed, transactional memory uses the 

concept of transactions to make look-free 
synchronization more efficient comparing to mutual 

exclusion-based techniques (lock-based). Lock-based 

techniques enable only one thread to enter a critical 

section which is the part of program that may cause 

conflicts in parallel execution [9]. However, 

transactional memory enables multiple threads to 

execute transactions concurrently and abort 

transactions that have conflicts. Building on hardware 

transactional memory, a software 

transactionalmemory is produced to work as 

efficiently as hardware one with more flexibility in 
transactional programming [20].  

In this paper, we suggest increasing the throughput 

of a classic algorithm which is the Lazy Snapshot 

Algorithm (LSA), by maintaining the scheduling of 
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the transactions. The fairness of transactions’ 

scheduling is to balance between read-only 

transactions and update transactions. The read-only 

transactions do not hurt the system’s consistency 

because they do not change the memory status. In 

addition, the duration of read-only and update 
transactions and the transactions’ dependencies vary 

from one system to another which implies that 

different scheduling is required for different systems. 

For example, if the system uses an array to store data, 

then every piece of data would be stored in a specific 

row in the array (using index). In this case the 

transaction executes read operation which reads the 

value that is stored in that row, while the update 

transaction writes a new value to that row. On the 

other hand, for any system uses red black tree data 

structure to store data. The transaction has to traverse 

the tree to find the required element and read it. For 
an update transaction, the write operation also has to 

traverse the tree to the leaf, insert the new node and it 

may need to recolor and reshape the tree. Thus, the 

duration of transactions varies from system to system 

based on the structure of the systems and the memory. 

So, fairness of scheduling is to decide how many 

read-only transactions to be committed per update 

ones and this ratio is called Fairness Value (FV). The 

FV is selected according to machine learning 

technique through keeping the track of transactions’ 

history.  
By recording a prefix of transactions’ execution, 

we find out the order and number of read-only and 

update transactions and pass them to the learning 

model. We use supervised and unsupervised machine 

learning models which will be explained in detail in 

sections III and IV. Three supervised machine 

learning techniques such as Support Vector Machine 

(SVM), Decision Tree Model (DTM) and K-Nearest 

Neighbor (KNN) are used for classification. 

According to the prefix information, SVM, DTM and 

KNN map the given information to the suitable FV. 

Furthermore, we compare the results of the 
supervised machine learning techniques with the 

Hidden Markov Model (HMM) which is an 

unsupervised machine learning technique. In fact, our 

study shows the superiority of KNN over the other 

models [23] [24].  

The rest of this paper is organized as follows: In 

Section II, we discuss some related works. The 

design of the supervised machine learning models is 

presented in Section III. In Section IV, we present the 

design of the unsupervised machine learning model. 

Section V discusses our algorithm. The experiments 
and some results are presented in Section VI, while 

the Section VII concludes the paper. 

II. RELATED WORKS 

In this section, we first show some related works 

that are connected to transactional memory. Then we 

illustrate some works related to machine learning 

models. We end the section with some works that 

combine both of them. 

Software Transaction Memory (STM) [20] is 

successful to support multi-processor systems. Most 

STM tries to avoid conflicts and guarantee 

progressiveness in different ways. Devietti et al. [5] 
show how to acquire determinism and consistency in 

the execution. Transactions can be classified 

according to whether the objects’ statuses are private 

or shared, and whether the operations are reads or 

writes. They offer different techniques to handle 

determinism. In some situations, thread must get the 

token to execute a transaction and in other situations 

thread can execute transaction directly. The token is 

used to guarantee sequential execution for conflicted 

transactions. However, this algorithm has two 

problems which are dead-lock problem (when two 

threads block each other) and starvation (when thread 
may wait forever to be executed). In our algorithm, 

we schedule transaction according to the type of their 

operations.  

The Multi-versions Permissive is a kind of 

algorithms that keeps many versions of the same 

object to allow more concurrency [16]. In case of 

conflict, this algorithm could prevent aborting by 

re-executing some of the conflicted transactions 

using the old versions. A well-known example of 

multi-version algorithm is LSA [18]. With LSA, we 

check the states of the consistency of the object 
version at the access moment. Therefore, we can 

build consistent snapshots during the execution of 

transaction to assure that transaction reads consistent 

versions and guarantees correctness of execution. The 

correctness of transaction’s execution is verified if 

the snapshots of all objects versions it accesses are 

consistent, which will be explained in detail in 

section 4. However, we claim that the type, length 

and order of transactions affect performance 

[9][13][4][21]. Thus, we suggest scheduling 

transactions in a way that suits the transactions’ 

content and the data structure they work on.  
Moreover, one of the machine learning techniques 

used in our paper is SVM. SVM is a supervised 

machine learning technique in which we design a 

dataset that includes some training examples. Then, 

SVM classifies the data according to the given 

examples. The accuracy of classification of SVM will 

be computed according to the margins and distances 

among classes [12][3].  

Another supervised machine learning technique is 

K-Nearest Neighbor, which classifies objects based 

on the nearest training examples [2][19] [24]. In other 
words, it clusters similar data in classes. Both of them 

can be used in our algorithm to decide the proper FV.  

DTM is proposed to reduce the complexity of 

sorting and search problems. It traverses the tree from 

the root to the leaves and in every level it takes a 

decision on which path to follow. The decision is 

taken based on a comparison of two numbers within 
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constant time. A decision tree allows reducing the 

complexity of a set of elements of size n to log n [1].  

Decision tree learning uses a decision tree to map 

some inputs which are features or observations about 

an object to specific outputs. In classification, we 

traverse a tree and pass some levels (nodes). In each 
intermediate node, we run a test on the object 

features and based on the result we decide which 

branch to follow until we arrive to the leaf which is 

the suitable class [17].  

Another idea presented by Wang suggests using 

different algorithms according to the inputs’ types 

[22]. Wang uses transactional memory with a 

machine learning model and with an expert system. 

However, the experiment focuses on some hardware 

features such as transactional memory type and cache 

size. On the other hand, our algorithm uses a learning 

model to find the suitable FV to guide the scheduling 
process and improve the performance.  

Another work applies Markov Chain to improve 

STM performance [6]. It uses the Markov Chain for 

scheduling to control the contention of transactions 

and decide on blocking temporarily when it is needed. 

In fact, they focus on contention and the number of 

transactions running in parallel regardless of the type 

of these transactions. However, in our paper we use 

the HMM which is an unsupervised learning model 

[10][6] [23] to decide how to schedule the 

transactions based on their types.  

III. THE SUPERVISED MACHINE LEARNING 

TECHNIQUES AND DATASET 

In supervised learning, we generate a function that 

maps inputs to suitable outputs which are called 

labels or classes. Experts often provide some training 

examples that supply systems with labels or classes. 

For example, in classification problems, the learner 

approximates a function that maps a vector into 

classes by looking at training examples. Thus, to use 

a supervised model we have to generate a dataset that 

includes some training examples. The training 

examples show how to map the features to the 
suitable FV. In our dataset, there are three features 

which are the number of reads-only, the number of 

updates and the order of the transactions which we 

call the sequence length. 

Our study focuses on the throughput (commit per 

time) of transactional memory. Thus we maintain 

transactions’ scheduling based on recognizing the 

deference between the behaviors of read-only 

transactions and update ones (which is explained in 

the introduction). Hence we consider the number of 

read-only and update transactions as features. Also 

the dependencies between them are very important so 

we consider the order the transactions using the 

sequence length feature. In fact, those are the main 

features that should be considered for throughput of 

transactional memory. 
Actually, we track the prefix of transactions’ 

history (which is a part of transactions’ history that 

precedes the learning process) and pass it to the 

learning model. We count how many read-only 

transactions and how many updates are in the prefix. 

Also, we convert the order of reads and updates into 

one number and we call it the sequence length. Table 

I shows an example of how to calculate sequence 

length for only 10 transactions with different orders. 

In the first scenario, there are 5 reads followed by 5 

updates. The sequence consists of two numbers 

which are 5 and 5, so the sequence length equals to 2. 
In the second scenario, the sequence consists of 1 

update, 1 read, 1 update, 1 read and so on. It consists 

of 10 numbers, so the sequence length is 10. 

Our dataset consists of four columns which are the 

three features followed by the suitable FV. To 

generate the dataset we first need to know the size of 

the prefix which is a piece of history we track to 

extract the pattern from. Then we need to find all 

possible combinations of the three features. For 

example, if the prefix size is 20, the first combination 

is 1 read-only, 19 updates and the sequence length is 
2, which means the read-only transaction is the first 

or the last one in the prefix. The next combination 

will be 1 read-only and 19 updates and the sequence 

length is 3, which means the read-only transaction is 

somewhere in the middle of the prefix and so on. 

Then we pass each permutation as an input set to the 

LSA and we run it with all FVs we want to test. 

During the runs we record the throughput of all FVs 

on our algorithm (LSA that is explained in Section V), 

and the FV with the maximum throughput will be the 

suitable class. This way we generate all training 

examples in the dataset. 
In Algorithm 1, we show how to design our 

training examples. The following procedures explain 

how we find the suitable FV (class) for each training 

example: 

 We design the training examples in the dataset. 

We design the dataset array (dataset[][]) which 

has examples where each example consists of 

three features and suitable FV (class). The 

features are the number of read-only, the 

number of updates, and the sequence length. As  
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Table I. Two Different Scenarios of 10 Transactions and How to Calculate the Sequence Length (r Means a Read-only Transaction and u 

Means an Update Transaction) 

Scenario 

1 

The 

Sequence 

The 

Sequence 

Length 

Scenario 

2 

 The 

Sequence 

The 

Sequence 

Length 

r1 
r2 

r3 

r4 

r5 

u1 

u2 

u3 

u4 

u5 

5, 5 2 u1 
r1 

u2 

r2 

u3 

r3 

u4 

r4 

u5 

r5 

 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1 

10 

shown in the algorithm, for example if the prefix 

size = 20, the first combination is 1 read-only, 19 

updates and the sequence length is 2. So, we 

make dataset [i][0] = i + 1 representing the 
number of read-only, dataset [i][1] = y where y 

= size−− representing the number of updates 

and dataset[i][2] = k where k = 2 representing 

the sequence length. 

 After we design the training example we create a 

prefix of history (permutations[]) which is  a 

group of transactions that reflect the same 

numbers in the training example.   

 We run the Transactional Memory algorithm 

(LSA) to execute the transactions in the prefix. 

In each run of LSA we select different FV to 

schedule transactions’ execution and we record 

the throughput of each FV in output[][]. 

 After we run all FVs (that are considered in our 

experiment), we record all throughputs, we  find 

the maximum throughput and its corresponding 

FV, and store that in temp[][]. 

 Then, we change the order of the transactions in 

the prefix by finding next permutation which 

preserves the same sequence length; we test it 

with LSA using all FVs and we store the 

maximum throughput in temp[][]. 

 Next we find the maximum throughput of the all 

permutations that represent this training example 

(which is the maximum throughput in temp[][], 

also we get the corresponding FV),  and we 

make that FV as the suitable class of this training 

example (dataset[i][4] = F V). 

 Now we design the next training example and 

keep doing the same process. 

For simplicity and to avoid learning process 

overhead, in our experiment we reduce the size of the 

prefix to 10 transactions. In ourexperiment, we test 

all FVs from 1 to 9 and according to the results we 

select only three FVs which are 1, 4 and 8. The FV= 

1 means 1 read-only transaction per 9 updates. The 

FV= 4 means 4 read-only transactions per 6 updates, 

while FV= 8 means 8 read-only transactions per 2 

updates. More details about FV selecting will be 
illustrated later in section V. 

Table II shows a sample of our dataset which 

consists of rows and columns. The first row gives a 

summary of dataset. It states that the number of 

examples is 54, the number of columns is 4, and 
shows the three classes. Then, each example is placed 

individually in a row. For example, in row number 2 

in the table, the example 1, 9, 2, 1 means that if there 

are 1 read-only transaction, 9 update transactions and 

the sequence length is 2, then the suitable FV is 1. 

The FV is assigned to the training example based on 

Algorithm 1. 

 

A. Support Vector Machine 

The basic SVM takes a set of input data and 

predicts the suitable output and each given input will 
be classified into a suitable class [12]. Fig. 1, shows 

the SVM classification accuracy which is calculated 

according to the following formula: 

w∗ x + b = 0, where 

x denotes the features 
w the normal vector to the hyper plane 
b denotes misclassification 
Higher accuracy of the classification using SVM 

requires bigger margins among classes. 

At the beginning we need to test the classification 

accuracy of SVM. In fact first two features (which 

are the number of read-only and the number of 

update transactions) are more important, so we 
decide to design and test a dataset with only those 

two features. Also we select only 3 FVs. We use 

Scikit-learn to test the machine learning models in 

this paper  

(Scikit-learn is a package that is designed to 

introduce many machine learning algorithms and 

codes in Python in a simple and understandable way) 

[15]. The result of running the SVM classifier using 

the dataset of two features is shown in Fig. 2 (a). In 

Fig. 2 (a), the x axis represents the number of read-

only and y axis represents the number of updates. 
The classes represent the three FVs. Each point in the 

figure represents a training example. The accuracy of 

this classification was about 73% which is not high. 

Some dots are classified in the wrong class. It is clear 

that there is misclassification which decreases the 

classification accuracy. Therefore, the SVM fails at 
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some point because SVM accuracy increases when 

the margin between classes is bigger. However, in 

our model we need to classify some dots where the 

number of read-only transactions is close to the 

number of updates and those usually affect the 

accuracy of SVM [12]. 
 

 
Fig.1:SVM Classifier Uses a Hyperplane to Classify a Set of 

Elements into Two classes. The Accuracy of Classification 

Depends on Margin Between Classes. 

 
Table II. Some Training Example from our Dataset (Where the FV 

is Assigned to the Training Examples Based on Algorithm 1.) 

54    4     1     4    8 

 1     9     2     1 

 2     8     2     1 

 2     8     5     1 

 : 

 : 

 5     5     2     8 

 5     5     5     4 

 5     5    10    8 

 : 
 : 

 9     1     2     8 

 : 

 

B. Decision Tree Model 

DTM is supervised learning method that maps 

input to output by following some decision rules. The 

model gets the input and finds out the features, then 

based on the features the model traverses the tree 

starting from the tree’s root node. In each node, and 

based on some decision rules, the model decides 

which path to take until arriving to the leaf. In 

classification, the tree leafs are the classes, so the 
paths of the tree eventually map the input to a 

suitable class [15]. For example, any boolean rule 

such as 

if-then statement represents a tree with many 

branches.  

In fact we decide to use DTM because its cost is 

very low (the cost of trees is logarithmic) which is 

important to avoid the learning process overhead. 

Also the cost is important to cope with the high speed 

of transactional memory. However the accuracy of 

DTM might be affected since even small variations in 

data result in huge variations in the shape of tree 

which affect the classification process [15]. 

Fig. 3 shows an example of decision tree where the 

rules in the nodes is set based on the examples in the 
dataset. In each node there is a test rule which has yes 

or no result. For example we test a history that has 

some read-only and update transactions, by compare 

it to some integers such a and b. We traverse the 

tree’s tests that are designed according to the training 

examples until it arrives to one of the classes. Clearly 

the accuracy of the rules influences the accuracy of 

the classification.  

 

 
Fig.2: SVM, DTM and KNN with the Dataset of Two Features. 

We Use the Standard Programs that are Provided by Scikit-learn 

Package to Measure the Accuracy of the Three Models. 

 
The result of running the DTM classifier using the 

dataset of two features is shown in Fig. 2 (b). In Fig. 

2 (b), the x axis represents the number of read-only 

and y axis represents the number of updates. The 

classes represent the three FVs. Each point in the 
figure represents a training example. The accuracy of 

this classification is about 85% which is acceptable. 

Obviously, the dots are classified in suitable classes. 

However, some classes are broken into many parts 

since it does not consider the status of the neighbors. 

 

C. K-Nearest Neighbor 

The k-Nearest Neighbor algorithm (KNN) is a 

classifier that classifies objects based on closest 

training examples in the feature space [2][19]. 

 

 
 

Algorithm 1: Dataset Training Examples 

CalculateSequenceLength(); // How many times we switch from read-only to update or from update to read 

                                              // only 

int size; // The number of transaction we track 
dataset[][4]; // Dataset array 

permutations[]; // All permutations for the same number of read-only and update transactions 
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output[rangofFVs][2]; // Record the throughput of LSA using the permutations array as an input 

temp[1][2]; // To stroe the temporary FV 

max[1][2] = {0, 0}; // To store the best FV 

y = size; // The number of updates 

// The loop for number of read-only and update transactions 

for from i = 0 to size – 1 do 

y--; 
// The loop for sequence length 

for from k = 2 to size do 

dataset[i][0] = i + 1; // The number of read-only 

dataset[i][1] = y; // The number of updates 

dataset[i][2] = k; // The sequence length 

// Now prepare array to find permutations 

n = i + 1; 

for from j = 0 to size – 1 do 

if (n > 0) then 

permutations[j] = 'r'; // r means read-only 

n--; 

else permutations[j] = 'u'; // u means update 
         // Now we test all permutations with all fairness values to decide the suitable FV 

s = 0; // Counter for do while statement 

while (s < factorial(size)) do 

x = CalculateSequenceLength(permutations[]); 

if (k == x) then 

// FVs range is how many fairness values we test 

for from f = 1 to FVrangedo 

FV = F; 

output[F][0] = LSA(permutations[], size, FV); // Record the throughput of out algorithm  

// using the permutations array as an input and  

                                                                            // the current FV 
output[F][1] = FV; 

     temp[0][0] = FindMaximumThroughput(output[][]); 

     temp[0][1] = FindMaximumThroughput’sFV(output[][]); 

    // Find the FV of the maximum throughput 

if (temp[0][0] > max[0][0]) then 

max[0][1] = temp[0][1]; // Keep the best  FV 

permutations[] = nextpermutations(permutations[], size); // Find next permutations 

s++; 

dataset[i][4] = max[0][1]; // The suitable FV 

return; 

 

Fig. 2 (c) shows the implementation of KNN on the 
dataset of two features [15]. Fig. 2 (c) shows that all 

dots are classified under the correct class. The 

accuracy of KNN is about 90% which is higher than 

SVM and higher than DTM. Indeed in Fig. 2 the dots 

are classified similarly using DTM in subfigure (b) 

and KNN in subfigure (c), while the accuracy of 

DTM is 85% and the accuracy of KNN is 90%. That 

happens because there are different ways to measure 

the accuracy of classification. Actually the accuracy 

of every model is measured in specific way [15].  

Apparently, the KNN model is very flexible; it is 

able to classify the critical dots. The superiority of 
KNN over the other models will be clearly appearing 

when we have more critical training examples. Also 

when we execute our algorithm we are going to 

record the history of transactions and pass a piece of 

that history to the learning model to predict the 

suitable FV. So, it is possible for some systems to 

usually pass data which is considered as critical and 
difficult to classify. In short KNN model is more 

suitable for our system than both SVM and DTM. 

Thus, we decide to use KNN to support the 

transactions’ scheduling process. 

 

 
Fig.3: Decision Tree Model 

 
Moreover, we run the KNN classifier using the 

dataset based on three features that appears in Table 
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II. At the beginning and we tested the classification 

accuracy of SVM, DTM and KNN using a dataset 

with only two features which are the number of read-

only and update transactions (for clarity and for the 

importance of those two features). Actually for more 

accuracy we need to consider on more feature which 
is the order of the transactions. For example, the 

execution a bunch of read only transactions followed 

by a bunch of updates would be completely different 

from executing the same number of transactions 

while they are interleaved. Fig. 4 shows the result of 

the KNN classification on the three features where 

each feature is represented by an axis on the graph. 

The KNN is able to classify the data example into 

three classes which are red, blue and yellow 

representing the FVs 1, 4 and 8 respectively.  

For simplicity’s sake, we do not focus on the 

overfitting issue in the comparison among the three 
classifiers. However in our experiments (in section 

VI) we examine the ability of KNN model to 

generalize by using data that is collected online and 

not necessarily used in the training.  

IV. AN UNSUPERVISED MACHINE LEARNING 

MODEL 

Unsupervised learning is to model a set of inputs 

while here labels are unknown during training [8]. In 

fact, the model itself recognizes labels while it is 

running. In our problem we use unsupervised 

learning with HMM since it is very useful in 
sequence analysis such as in biology and in this 

research we have to analyze the history which is a 

sequence of transactions. Since HMM is one of the 

unsupervised machine learning models, there are 

unobserved hidden states X which must be discovered 

based on the observed data Y. HMM consists of some 

states and all states have probabilities that help to 

predict the hidden state [10]. For example, it is 

difficult to find a scheduling model that suits all 

systems by increasing throughput and reducing 

conflicts. Therefore, the suitable transactions’ 

scheduling for each system is the hidden state. 
However, we can find the hidden state based on some 

observations such as system performance, the 

transactions’ history and transactions’ duration. 

Furthermore, by recording observations and states 

frequently, the first result helps to predict the second 

one and so on. Thus, HMM calculations rely on the 

following:  

 The initial probabilities for hidden states. 

 Transition probabilities that tell how to transit 

among states over time. 

 Observation probabilities which are used as 
indications to find out the hidden states. 

 
 

Fig.4: KNN with our Dataset 

 
In our model the hidden states are the FVs. As we 

mentioned above the FVs we use are 8, 4 and 1. Fig. 

5 shows the initial probabilities which we need to 

start. The probabilities of FVs 8 and 1 are .33 and of 

FV 4 is .34, so the system more likely starts with 

state FV= 4. Even if we start with inaccurate 

probabilities, the model can improve itself over the 
time by maintaining probabilities based on the 

observations. Also, as the probability of X changes 

over time, we propose transition probabilities and we 

favor remaining in the current state. Therefore, the 

state of X at first unit of time T1 is more likely to 

remain the same at the second unit of time T2. While 

the probability of switching from X = 8 or 1 to 4 

is .35 and it is less likely to transit between 8 and 1 

directly since the probability is just .15. The 

probability of switching from X = 4 to 1 or 8 is .25. 

The two states at the bottom of Fig. 5 shows the 
probabilities of our observed data which is Y1 = read-

only and Y2 = update. Thus, the more reads favors the 

FV= 8, the more updates favors the FV= 1 and the 

equal number of both suits the FV= 4. In fact the 

probabilities in Fig. 5 is selected according to our 

investigations during the design of the dataset 

(Algorithm 1) that is used for supervised learning 

models. However, we try to select fair probabilities to 

reduce the influence of our decisions on the model.  

 

 
Fig.5:  HMM and the Probabilities (Start is the Initial State, X's are 

the States and Y's are the Observations) 

 

Fig. 6 shows how to build the sequence of states 

over time. It means to find the state of X4, we need to 

calculate the probability of initial state X1, the 
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transition probability from X1 to X2, the probabilities 

of Y1 using X2, the transition probability from X2 to X3, 

finding Y2 using X3, and the transition probability 

from X3 to X4. Indeed, we get the probability from the 

model (in Fig. 5) and we multiply them to calculate 

X4.  
 

 
Fig.6: Sequence of States in HMM 

 

V. THE DESIGN OF OUR ALGORITHM 

A. Background about LSA 

Using LSA [18],the memory consists of a set of 

objects where each object in the memory may have 

more than one version (a version shows the last 
written value to the object and the other versions 

show the old values). This algorithm is used to 

execute transactions in parallel where some read and 

write operations may interleave and affect the 

correctness of each other. Indeed, the correctness of a 

concurrent execution can be verified by matching it 

with a sequential valid execution. Many algorithms 

run transactions and validate a transaction’s 

execution at the end to commit or abort, but LSA 

verifies the consistency at each object access point of 

time. Thus, an LSA is able to verify the consistency 

of execution during each object access by building 
consistent snapshots. This, can accumulatively verify 

the validity and the correctness of the execution.  

When a transaction starts execution, the 

transaction sets the lower bound of its snapshots. The 

read operations try to read the last written version of 

the object. However, if the last written version was 

created after the transaction starts, it checks if this 

version violates the consistency, and if it does, it 

ignores that version and reads an older one which has 

a validity range that suits the transaction. This way 

LSA selects the version that produces the consistent 

snapshot. The write operations are executed locally 

and they create new versions at transaction’s commit 

time.  

Consequently, read-only transactions commit 

directly and they do not abort. The update transaction 

must validate the versions to commit or abort, and if 
it commits it has to get a unique commit time [18].  

 

B. Our Scheduling Algorithm 

At the beginning of the execution, our scheduling 

algorithm (Algorithm 2) executes transactions using 

LSA. We suppose that we know whether the 

transaction is read-only or update at the beginning of 

the execution. We record the transactions’ numbers, 

order and types in recordingArray[]. The size of the 

recordingArray[] is related to how much data we 

want to investigate. It is preferred to keep it as small 

as possible to avoid the learning overhead and its 
negative impact on the performance. Then, we pass 

the recorded data to the learning model which is 

either KNN or HMM and we conduct online and real-

time learning (HMM will treat transactions in 

recordingArray[] as a sequence of observations). The 

learning model processes the data and returns the best 

FV that suits the execution. After that, the model uses 

the proposed FV to schedule transactions on LSA 

(since different sequence of transactions affecting the 

execution and the performance of an algorithm. 

Actually the algorithm verifies the correctness based 
on the order of the transactions).  

In fact, we need to have continuous learning 

however that influences the performance of the 

system. Therefore, we add flexibility to the 

scheduling algorithm using frequent which is a 

number used to decide how frequently we call the 

learning model. The stability and consistency of the 

numbers, types and arrival times of transactions 

differ from one system to another. So, if the system is 

stable then we have large value for frequent, which 

means we call the learning model infrequently. In our 

scheduling algorithm, each transaction arrives 
increase a global counter transactionCounter. The 

transaction first checks the frequent to know if it isthe 

time to call the learning model or not. Then, if it is 

the time to call the learning model, then it records  



International Journal of P2P Network Trends and Technology ( IJPTT ) - Volume 9 Issue 4 – July - Aug 2019 

 

ISSN: 2249-2615                               http://www.ijpttjournal.org                               Page 27 

Algorithm2: The Scheduling Algorithm 

transactionCounter-1; 

sizex; // To set the size of recordingArray[] 
recordingArray[size]; // It records transactions’ order and type 

recordingfalse; 

frequentnumber; // It tells how frequently we call learning model. 

r 0; // Counts reads 

u 0; // Counts updates 
fvReadonly; // The value assigned by learning model 

fvUpdate; // The value assigned by learning model 

i 0; 

readonly 0; // Counts the pending reads-only 

update  0; // Counts the pending updates 
 

   Upon receipt of a transaction do; 

 

transactionCounter.getAndInc(); 

if ((transactionCountermod frequent) = 0) then 

recording true; 
if (recording = true) then 

i++; 

if (i<size) then 

if (TransactionType = read-only) then 

recordingArray[i]  0; // 0 means read-only 

else 

recordingArray[i]  1; // 1 means update 

else 

// The Learning Model was explained in Section III and IV 

fvReadonlyLearningModel(recordingArray[i]); 

fvUpdate (10 – fvReadonly); 

i 0; 

recording false; 

LSA(transaction); // Start execution using LSA 
else 

if (TransactionType = read-only) then 

readonly.getAndInc(); 

// When it exceeds the FV and there is no update transactions 

while ((r >fvReadonly) ^ (update = 0))do 

wait(); 

r++; 

LSA(transaction); // Start execution using LSA 

readonly.getAndDec(); 

else 

update.getAndInc(); 
            // when it exceeds the FV and there is no read-only transactions 

while ((u >fvUpdate) ^ (readonly = )) do 

wait(); 

u++; 

            LSA(transaction); // Start execution using LSA 

Update.getAndDec(); 

If ((r >fvReadonly) ^ (u >fvUpdate)) then 

r  0; 

u  0; 
return; 

 

transactions. In the recording process, each 

transaction is represented in the recordingArray[] as 

a 0 if it is read-only and as a 1 if it is an update 

transaction. Then it executes using LSA. After the 

recording finishes, we pass the recordingArray[] to 

the learning model (KNN or HMM) which returns 

the FV. The learning model returns the number of 

read-only fvReadonly and from that we calculate the 



International Journal of P2P Network Trends and Technology ( IJPTT ) - Volume 9 Issue 4 – July - Aug 2019 

 

ISSN: 2249-2615                               http://www.ijpttjournal.org                               Page 28 

number of updates fvUpdate. From this point, we 

schedule transactions based on the FV we have. 

Indeed, we ignore this FV just in case there is only 

one type of transaction. In the algorithm, we use 

readonly and update which are counters telling how 

many pending transactions there are of each type.  

VI.  EXPERIMENTAL RESULTS AND 

DISCUSSION 

In our experiment, we use standard benchmarks to 

verify the benefit of learning on transactional 

memory scheduling. In fact, we use Bank, Linked-list 

and Red-black Tree benchmarks from TinySTM-

1.0.5 [7]. We run the experiments on a machine with 

dual Intel(R) Xeon(R) CPU E5- 2630 (6 cores total) 

clocked at 2.30 GHz. Each run of the benchmark 

takes about 10000 milliseconds using 10 threads. In 

the Bank benchmark, there are three kinds of 

operations which are read balance, write amount and 
transfer from one account to another. Read balance is 

a read-only transaction, while write amount and 

transfer are update transactions, we consider any 

transaction that includes one write operation as an 

update. Initially, there are only 20% reads-only and 

80% updates. The benchmark executes millions of 

transactions that access 1024 bank accounts in 

parallel.  

In the Linked-list and the Red-black Tree 

benchmarks, there are three kinds of operation which 

are add node, delete node and contain which searches 
for specific value in the list or tree. Contain 

operations are considered as read-only but add node 

and delete node operations are update transactions. In 

both, initially there are 80% reads-only and only 20% 

updates. However, we test the three benchmarks with 

three different scenarios which are 80% reads-only 

and 20% updates, 50% reads-only and 50% updates, 

and 20% reads-only and 80% updates.  

First, we run each benchmark against all FVs to 

obtain a general idea about FVs themselves and how 

they affect the performance. The FVs we use are 

ratios out of 10 such that the FV= 9 means 9 : 1, 
where the first number represents the number of 

reads-only while the other represents the number of 

updates. We test FVs from 1 to 9 with all three 

benchmarks and all scenarios. (Moreover, our 

algorithm permits to change the scheduling FV in 

response to any changes of arriving transactions 

which is note covered in this experiments since that 

we use the standard benchmarks that generate 

transactions in specific pattern).  

Fig. 7 (a) demonstrates the throughput of FVs 

(from 1 to 9) with the Linked-list benchmark using 

different percentages of reads and writes (we test 

every percentage of the transactions against all FVs). 

The figure shows that the performance improves as 

we increase the number of read-only transactions and 
that happens with the three scenarios. It is clear that 

the scenario of 80% of reads only is the best, while 

throughput drops as we increase the number of 

updates. Also, within each scenario large FVs allow 

more reads-only to be scheduled concurrently which 

increase throughput as well. This happens because 

the reads-only usually have less durations than 

updates and do not abort as they do not affect the 

consistency. This increases the throughput and 

improves the performance.  

The same thing happens with the Red-black Tree 

benchmark. Fig. 7 (b) shows the Red-black Tree 
throughput with all FVs. The figure shows dramatic 

increment in the throughput for the three scenarios 

when the FV allows more reads-only (using large 

FVs) because the reads-only is much faster than 

updates. In updates, a transaction has to traverse the 

entire tree to the leaf and it may need to change the 

colors of some nodes and the shape of the tree which 

makes the update transaction much longer. Thus, 

raising the number of reads-only through the 

percentage of generated reads-only or through 

scheduling improves the performance.  
Fig. 7 (c) illustrates the Bank benchmark where all 

FVs have almost the same performance with all 

scenarios. This happens because of the data structure 

type, and because of the differences between the 

duration of read-only transactions and update ones is 

very small (as explained in the introduction). Indeed, 

the duration of read-only transactions here is a bit 

longer than the duration of updates. Thus, the 

scenario of 20% reads-only and 80% updates 

achieves the top performance.  

In our experiment the FV=9 shows good 

performance with the Linked-list and the Red-black 
Tree benchmarks but it cannot be guaranteed for 

different algorithm and benchmarks. For example, in 

Bank benchmark some other FVs are better than 

FV=9. Indeed, our benchmark uses LSA, where any 

read operation tries to find the suitable version of the 

object (based on the transaction’s timestamp). By 

keeping many versions, read operation is able to 

execute correctly and read-only transactions usually 

commits. Therefore, using FV=9 (to schedule 9 

read-only transactions and 1 update) the 9 read-only 

transactions usually commit which increases the 
throughput.  
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Fig.7: (a) Linked-list Throughput with All FVs. (b) Red-black Tree Throughput with All FVs. (c) Bank Throughput with All FVs. 

 

Furthermore, having all FVs as classes in the 
learning model will affect the accuracy and increase 

the learning overhead. Therefore, we need to reduce 

the number of FVs in the learning model based on the 

results shown in Fig. 7. We select only three FVs 

which are 1, 4 and 8 to be the classes in our learning 

process. Apparently, Fig. 7 shows that the 

performance of FV= 1 is very close to FV= 2, the 

FV= 4 is comparable to 3, 5 and 6, and the 

performance of FV= 8 is akin to FVs 7 and 9.  

In Fig. 8, we show the accuracy of learning models. 

We run LSA with learning models which are HMM 

and KNN such that the learning models check the 
prefix of execution and decide the suitable FVs. Then 

we enforce different FVs in LSA scheduling and we 

compare their (FVs) throughputs (such as in Fig. 7) 

with throughputs of LSA using HMM and LSA using 

KNN. In fact such comparison allows to clearly see 

the accuracy off the learning models. Actually we run 

them on the three benchmarks (Linked-list, Red-

black Tree and bank) and we run each one with three 

scenarios (80% reads-only and 20% updates, 50% 

reads-only and 50% updates and 20% reads-only and 

80% updates).  
Fig.8(a)showsthethroughputofLSAontheLinked-

listbenchmarkwhereFV =9showsthe best of the 

enforced FVs. LSA using HMM shows high accuracy 

in some cases and fails with others. Clearly, HMM 

returns an accurate FV when there is 80% reads-only 
and 20% updates but it returns inaccurate FVs with 

the other scenarios (50% reads-only and 50% updates 

and 20% reads-only and 80% updates). On the other 

hand, LSA using KNN returns accurate FVs with all 

three scenarios.  

Fig. 8 (b) shows the throughput of LSA on the 

Red-black benchmark where F V = 9 also shows the 

best performance (highest throughput) of the 

enforced FVs. LSA using HMM performs well with 

the scenario of 80% reads-only and 20% updates but 

it does not succeed with the other two scenarios. 

However, LSA using KNN performs well with all 
three scenarios which indicates the success and 

accuracy of KNN in the selection of FVs.  

Fig. 8 (c) shows the throughput of LSA on the 

Bank benchmark where all FVs perform almost the 

same. Thus, the accuracy of HMM and KNN cannot 

be judged as the selection of any FV does not show 

any difference on the throughput. However, it is clear 

that both HMM and KNN do not show negative 

impact on the performance because they are designed 

in a proper way that minimize their overhead.  

Fig. 9 demonstrates a comparison of the 
performance of LSA using transactions’ timestamps 

scheduling, LSA with KNN and LSA with HMM. 

Timestamps scheduling means to schedule 

transactions based on their arrival times. Using the 
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Fig.8: (a) The Accuracy of LSA Using KNN and LSA Using HMM Compared to the Enforced FVs Using the Linked-list Benchmark. (b) 

The Accuracy of LSA Using KNN and LSA Using HMM Compared to the Enforced FVs Using the Red-black Tree Benchmark. (c) The 

Accuracy of LSA Using KNN and LSA Using HMM Compared to the Enforced FVs Using the Bank Benchmark. (We Measure the 

Accuracy Based on the Throughput) 

 

Linked-list benchmark, Fig. 9 (a) shows that high 

percentage of read-only transactions usually results in 
high throughput as we mentioned before. Fig. 9 (a) 

proves the advantage of using machine learning for 

transactions’ scheduling. For LSA using KNN, it 

shows the highest throughput with all scenarios. 

When we use HMM, it improves the performance of 

LSA only when the percentage of reads-only is high. 

On the other hand, the performance of LSA with 

HMM is negatively affected as the percentage of 

updates increases. The figure also illustrates the risk 

of the learning process, as the learning accuracy 

problems lead to unsuitable scheduling which causes 

more aborts. This clearly happens with HMM when 
there are 50% or 80% updates. Thus, KNN obviously 

is more suitable to LSA scheduling.  

The same thing happens with the Red-black Tree 

benchmark in Fig. 9 (b), where KNN is more 

efficient than HMM and timestamps scheduling. 

HMM works well only with a large number of read-

only transactions and it fails when we reduce the 

reads-only.  

In Fig. 9 (c), with the Bank benchmark, the 

duration of update transaction is less than read-only 
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Fig.9: (a) LSA, LSA with KNN and LSA with HMM Throughputs Comparison Using Linked-list Benchmark. (b) LSA, LSA with KNN and 

LSA with HMM Throughputs Comparison Using Red-black Tree Benchmark. (c) LSA, LSA with KNN and LSA with HMM Throughputs 

Comparison Using Bank Benchmark. 

 

one. So, the throughput drops when there are more 

read-only transactions. Furthermore, KNN and HMM 

do not have significant influence on the performance 

of Bank benchmark because the durations of 
transactions in general are very short, and the 

durations of updates with aborts is almost equal to the 

durations of reads-only.  

Thus, the learning techniques are more helpful if 

transactions’ durations in average are long, and when 

the costs of updates and aborts are very expensive. 

Also, the KNN learning model helps to achieve high 

throughput and better performance of LSA.  

On the other hand, one might argue that FV=9 

could always be used instead of going through the 

overhead of the learning model computations. This 
argument could be based on the premise, that FV=9 

shows good throughput in all benchmarks. In fact, 

this premise can be misleading especially with 

systems where information has to be up to date most 

of the times. In such systems, we should allow more 

updates to commit instantaneously, so that read-only 

transactions read up to date values. Another reason to 

show that FV=9 is not always good is that some 

systems have increasingly high number of reads and 

writes competing on a limited storage (for example, 

small number of memory objects or linked-list with 

small number of nodes). This will result in higher 

chances of dependencies and conflicts among 

transactions, which results in more updates having to 

be aborted.  
 

 
Fig.10: The Number of Read Transactions to the Number of 

Update Transactions. 

 

Both scenarios are investigated in Fig. 10 and Fig. 
11. In Fig. 10, FV=9 shows the highest total 

throughput. Although the reads are dominating the 

updates, this shows that huge amount of update 

transactions are not able to commit, so most of these 
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reads read outdated values (not stale). This is shown 

in Fig. 11 where FV=9 results in 81% of update 

transactions being aborted. In other words, for each 

committed update transaction there will be around 

four aborted update transactions. Thus, with FV=9 

only about 19% of updates are able to commit, which 
is not optimal for sensitive systems that requires 

frequent update. 

However, if the algorithm aborts read-only 

transactions then FV=9 could be the worse, 

especially with a program of very high dependencies 

among transactions. In short, FV=9 is a good choice 

with the algorithms that do not abort read-only 

transactions, while our model is very useful for other 

cases. For example, when the chance of aborting 

read-only and update transactions are equal.  

 

 
Fig.11. Total Update Transactions vs Committed and Aborted 

Update Transactions. 

Table III shows the learning overhead for KNN 

and HMM that are combined with LSA using 

Linked-list, Red-black Tree and Bank benchmarks. 

The table illustrates the percentages of the execution 

time of the learning process out of the total execution 
time of KNN+LSA and HMM+LSA using the three 

benchmarks. The differences among the three 

benchmarks depend on how frequent they call the 

learning function. In our experiment the size of 

recordingArray[] is 20 which means every time we 

receive 20 transactions we call the learning function 

and so on. Overall the learning process overhead is 

reasonable comparing to the improvement on the 

throughput.  

 
Table III. The Percentages of the Execution Time of the Learning 

Process (Learning Process Overhead) Out of the Total Execution 

Time of KNN+LSA and HMM+LSA Using Linked-list, Red-black 

Tree and Bank Benchmarks. 

 KNN HMM 

Linked-list 4.8% 6.38% 

Red-black Tree 10.01% 10.94% 

Bank 3.28% 3.51% 

Average 6.03% 6.95% 

VII. CONCLUSION 

In conclusion, our scheduling algorithm uses the 

idea of supervised and unsupervised learning models 

to improve the performance of transactional memory 

algorithms. This way of scheduling allows more 

flexibility to find the suitable scheduling for different 

problems (Linked-list, Red-black Tree and Bank). 

Type and duration of transactions extremely impact 

the performance of transactions execution. In the 

future, we want to test some other learning 
techniques with more features and using different 

algorithms.  
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